The Study on the Reducing Friction and Anti-Wear Performance of Zinc Phosphate Nanoparticles as Lubrication Additives

2013 ◽  
Vol 749 ◽  
pp. 211-216
Author(s):  
Yun Xia Lv ◽  
Xiu Chen Zhao ◽  
Jing Wei Cheng ◽  
Ying Liu ◽  
Hong Li

Oleic acid-modified zinc phosphate nanoparticles with about 15nm particle size were synthesized by chemical deposition method. The tribological properties of the prepared nanoparticles as lubricant oil additives on MSR-10D four-ball tribotest were investigated. Results indicated that the lubricant oils adding oleic acid-modified zinc phosphate nanoparticles exhibited a good friction-reduction and anti-wear property. The zinc phosphate nanoparticle as lubricant oil additive had the optimum concentration. Friction coefficient decreased 14.2% maximally, and the wear-scar width reduced to 36.5% correspondingly, as compared to the base oil without nanoparticles. The results of the worn surface analysis with SEM and AFM showed that the zinc phosphate nanoparticles could deposit on the worn surface and separate the direct contact between the asperities of the worn surface, which was effective in the reduction of the plough and adhesion between asperities.

2011 ◽  
Vol 44 (20) ◽  
pp. 205303 ◽  
Author(s):  
Wei Zhang ◽  
Ming Zhou ◽  
Hongwei Zhu ◽  
Yu Tian ◽  
Kunlin Wang ◽  
...  

2017 ◽  
Vol 737 ◽  
pp. 184-191 ◽  
Author(s):  
Vu Nguyen Anh Le ◽  
Jau Wen Lin

This study investigates the influence of aluminum nanoparticles, oleic acid as dispersants, and rotational speed on the tribological behavior of a lubricant. The experiments are performed on a pin-on-disc tribotester at a normal force of 90 N and a rotational speed ranging from 150 rpm to 600 rpm. Both the aluminum nanoparticles and oleic acid are in concentrations from 0 to 1 wt% and are added to the SN150 base oil. The results revealed that the addition of aluminum nanoparticles and oleic acid to the base oil will lead to significant friction reduction and anti-wear properties. The coefficient of friction (COF) and wear rate decreased after an increase in the concentration of nanoparticles and oleic acid, and an optimum concentration level was exhibited in which both COF and wear-rate were lowest. The viscosity and temperature of the lubricant are also evaluated. Further, the topography of discs after performance of sliding test have been analyzed through the use of an optical microscope, a scanning electron microscope (SEM), and an energy dispersive spectrometer (EDS) in order to interpret the mechanisms of nanoparticle action used to prevent friction and subsequent wear.


2013 ◽  
Vol 316-317 ◽  
pp. 950-953 ◽  
Author(s):  
Xiao Yun Song ◽  
Shao Hua Zheng ◽  
Qiang Chen

The SiO2 nanoparticles were synthesized with a ydrothermal method and modified by oleic acid. The tribological properties of the modified SiO2 nanoparticles as bricating oil additives are studied by friction test. It was found that the nanoparticles as additives in lubricant oil can effectively improve anti-friction and anti-wear roperties. The anti-friction and anti-wear mechanisms were discussed and the lubricating effect of SiO2 nanoparticles can be attributed to rolling effect and self-repairing effect of mechanism.


Lubricants ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 63 ◽  
Author(s):  
Yingjing Dai ◽  
Hong Xu ◽  
Jinxiang Dong

Vegetable oil has significant potential as a base oil, and substitute for mineral oil in grease formulation due to its biodegradability, low toxicity and excellent lubrication. This paper studied the development of vegetable oil-based greases with α-Zr(HPO4)2·H2O (α-ZrP) as an additive, exploring base oil influence in tribological behavior. The results demonstrated that the addition of α-ZrP in vegetable-based greases is beneficial to anti-wear property. α-ZrP particles exhibit good performance in anti-wear, friction-reduction and load-carrying capacity, and its tribological performances are better than the normally used molybdenum disulfide and graphite additives. Owing to its superior tribological properties as a vegetable oil-based grease additive, α-ZrP holds great potential for use in environmentally friendly applications in the future.


MESIN ◽  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Senoadi Senoadi ◽  
Supri Adi ◽  
Rosyida Permatasari

<em>Mechanical contact is the process which can not be avoided in machinery system. The way to diminish thrist conditon which caused by the process is to give engine lubricant into that system. The lubricant resistance over the temperature system is influenced by base stock and its additives where contained of. Lubricant oil additives are chemical compounds that will improve or enhance the lubricant performance of base oil. These additives are carefully designed to ensure the functions in machines system. Engine lubricant that used in this research is MPX 1 SAE 10 W-30 and the additives that used is Engine Additive with brand Lupromax. The aim of this research is to analyze the reaction of increasing the additive EA over to viscosity and machine function of Honda All New CB 150R. In this research, it is found that the fusion with EA 5.25% (1200 ml lubricant with 63 ml additives) could: (1) reduce viscosity to 66.56 mm<sup>2</sup>/s and 9.9 mm<sup>2</sup>/s at temperatures of 40°C and 100°C, respectively, (2) enhance the torque and energy to 14.5 kW @9000 rpm and 12.23 Nm @7000 rpm with reducing the rate emision of CO to 0.44% vol, HC to 196 ppm vol, CO<sub>2</sub> to 6.5% vol and enhancing the rate of O<sub>2</sub> to 10.71%, and (3) reduce fuel consumption to 18.75 ml/km.</em>


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 732
Author(s):  
Yeoh Jun Jie Jason ◽  
Heoy Geok How ◽  
Yew Heng Teoh ◽  
Farooq Sher ◽  
Hun Guan Chuah ◽  
...  

This study investigated the tribological behaviour of Pongamia oil (PO) and 15W–40 mineral engine oil (MO) with and without the addition of graphene nanoplatelets (GNPs). The friction and wear characteristics were evaluated in four-ball anti-wear tests according to the ASTM D4172 standard. The morphology of worn surfaces and the lubrication mechanism of GNPs were investigated via SEM and EDS. This study also focuses on the tribological effect of GNP concentration at various concentrations. The addition of 0.05 wt % GNPs in PO and MO exhibits the lowest friction and wear with 17.5% and 12.24% friction reduction, respectively, and 11.96% and 5.14% wear reduction, respectively. Through SEM and EDS surface analysis, the surface enhancement on the worn surface by the polishing effect of GNPs was confirmed. The deposition of GNPs on the friction surface and the formation of a protective film prevent the interacting surfaces from rubbing, resulting in friction and wear reduction.


RSC Advances ◽  
2020 ◽  
Vol 10 (34) ◽  
pp. 19982-19996 ◽  
Author(s):  
Colleen Jackson ◽  
Graham T. Smith ◽  
Nobuhle Mpofu ◽  
Jack M. S. Dawson ◽  
Thulile Khoza ◽  
...  

A simple, modified Metal–Organic Chemical Deposition (MOCD) method for Pt, PtRu and PtCo nanoparticle deposition onto a variety of support materials, including C, SiC, B4C, LaB6, TiB2, TiN and a ceramic/carbon nanofiber, is described.


2007 ◽  
Vol 90 (10) ◽  
pp. 102505 ◽  
Author(s):  
S. Engel ◽  
T. Thersleff ◽  
R. Hühne ◽  
L. Schultz ◽  
B. Holzapfel ◽  
...  

2014 ◽  
Vol 137 (1) ◽  
Author(s):  
Alaa Mohamed ◽  
T. A. Osman ◽  
A. Khattab ◽  
M. Zaki

Carbon nanotubes (CNTs) with 10 nm average diameter and 5 μm in length were synthesized by electric arc discharge. The morphology and structure of CNTs were characterized by high resolution transmission electron microscopy (HRTEM) and X-ray powder diffraction. The tribological properties of CNTs as an additive on lithium grease were evaluated with a four ball tester. The results show that the grease with CNTs exhibit good performance in antiwear (AW) and decrease the wear scare diameter (WSD) about 63%, decrease friction reduction about 81.5%, and increase the extreme pressure (EP) properties and load carrying capacity about 52% with only 1% wt. of CNTs added to lithium grease. The action mechanism was estimated through analysis of the worn surface with a scanning electron microscope (SEM) and energy dispersive X-ray (EDX). The results indicate that a boundary film mainly composed of CNTs, Cr, iron oxide, and other organic compounds was formed on the worn surface during the friction process.


2020 ◽  
Vol 72 (7) ◽  
pp. 821-827
Author(s):  
Zhaojie Meng ◽  
Yunxia Wang ◽  
Xiaocui Xin ◽  
Hao Liu ◽  
Yunfeng Yan ◽  
...  

Purpose The purpose of this study is to examine the fretting wear property of ultra-high molecular weight polyethylene (UHMWPE)-based composites reinforced by different content of attapulgite. Design/methodology/approach A series of composites were prepared by a hot-pressing method. Fretting tests were carried out using an SRV-IV oscillating reciprocating friction wear tester with a load of 10 N and a frequency of 100 Hz. The morphology of the fracture structure and the worn surface was observed by field-emission scanning electron microscopy, X-ray diffraction and a non-contact three dimensional surface profiler. Findings With the addition of attapulgite, the microstructure of the composites become more regular, and their heat resistance improved. Furthermore, the friction coefficient and the specific wear rate of the composites with lower filler content reduced compared with that of neat UHMWPE, and the optimum filler content is 1 per cent. Originality/value The study investigated the fretting resistance mechanism of the attapulgite in the UHMWPE matrix. The results could help to provide some experimental evidence for the broader application of silicates on the fretting wear resistance of polymers. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-10-2019-0420/


Sign in / Sign up

Export Citation Format

Share Document