Izod Impact Tests in Polyester Matrix Composites Reinforced with Banana Fibers

2014 ◽  
Vol 775-776 ◽  
pp. 261-265 ◽  
Author(s):  
Sergio Neves Monteiro ◽  
Frederico Muylaert Margem ◽  
Foluke Salgado de Assis ◽  
Rômulo Leite Loiola ◽  
Michel Picanço Oliveira

Polymer matrix composites have been applied in components such as helmets and shielding for which toughness is a major requirement. A natural fiber presents interfacial characteristics with polymeric matrices that favor a high impact energy absorption by the composite structure. The objective of this work was then to assess the Izod impact resistance of polymeric composites reinforced with different amounts, up to 30% in volume, of a promising high strength natural fiber, the banana fiber. The results showed a remarkable increase in the notch toughness with the amount of incorporated banana fibers. This can be attributed to a preferential debonding of the fiber/matrix interface, which contributes to an elevated absorbed energy.

2020 ◽  
Vol 1012 ◽  
pp. 20-25
Author(s):  
Fabio da Costa Garcia Filho ◽  
Michelle Souza Oliveira ◽  
Foluke Salgado de Assis ◽  
Artur Camposo Pereira ◽  
Fernanda Santos da Luz ◽  
...  

Banana fibers are among the natural lignocellulosic fibers with greater potential for use as reinforcement in polymer matrix composites. Attractive mechanical and physical properties as well as low cost of production are considered as the main advantages on the use of such fibers. This works aims to study the mechanical behavior of the banana fiber when used as filler to the two most commonly used thermoset matrices (epoxy and polyester). The specimens were produced with up to 30 vol% of banana fibers for both polymeric matrices. Tensile strength tests as well as macroscopic and microscopic evaluation of the fractured surface were carried out. It was shown that, indeed, the banana fiber provided a substantial reinforcement for both matrices. On the other hand, mechanical strength associated with the composite epoxy/banana was more than 50% higher than the exhibit by the polyester/banana one. Such behavior could be associated with the interfacial strength regarding the fiber and the matrix.


2019 ◽  
Vol 16 (31) ◽  
pp. 111-125
Author(s):  
Laudenor AMORIM ◽  
Santino Loruan Silvestre DE MELO ◽  
Sérgio Luís Moura DE PAIVA JÚNIOR ◽  
Enio Pontes DE DEUS

The development of more resistant and inexpensive materials were important for the emergence of composites, materials that are the result of the mixing of two or more distinct components with improved properties. Vegetable fibers reinforced polymer matrix composites help to reduce costs as well as to preserve product quality. Sisal fibers are important due to good impact resistance and availability. Thus, the characterization used infrared spectroscopy and UV-Vis diffuse reflectance. The main purpose was to adapt the methodology used, in order to improve fiber-matrix adhesion, but without risks of fiber defibrillation. Scanning electron microscopy was used to obtain the morphological characterization and the energy-dispersive X-Ray spectroscopy to describe the elemental chemical composition of the fibers. Chemical treatments using NaOH 2% and acetylation with acetic acid and acetic anhydride in the ratio (1:1,5) were important to observe the main changes such as the removal of impurities and the smaller amount of water absorbed in the acetylated fiber, which allows a better adhesion of the fibers with a polymer. After this, the fibers can be used to the production of polypropylene and polyethylene composites that are expected to apply in automotive parts such as bumpers, fuel tanks and internal coatings.


Author(s):  
Isabela Leão Amaral da Silva ◽  
Alice Barreto Bevitori ◽  
Caroline Gomes de Oliveira ◽  
Frederico Muylaert Margem ◽  
Sergio Neves Monteiro

2015 ◽  
Author(s):  
Risa Yoshizaki ◽  
Kim Tae Sung ◽  
Atsushi Hosoi ◽  
Hiroyuki Kawada

Carbon nanotubes (CNTs) have very high specific strength and stiffness. The excellent properties make it possible to enhance the mechanical properties of polymer matrix composites. However, it is difficult to use CNTs as the reinforcement of long fibers because of the limitation of CNT growth. In recent years, a method to spin yarns from CNT forests has developed. We have succeeded in manufacturing the unidirectional composites reinforced with the densified untwisted CNT yarns. The untwisted CNT yarns have been manufactured by drawing CNTs through a die from vertically aligned CNT arrays. In this study, the densified untwisted CNT yarns with a polymer treatment were fabricated. The tensile strength and the elastic modulus of the yarns were improved significantly by the treatment, and they were 1.9 GPa and 140 GPa, respectively. Moreover, the polymer treatment prevented the CNT yarns from swelling due to impregnation of the matrix resin. Finally, the high strength CNT yarn composites which have higher volume fraction than a conventional method were successfully fabricated.


2015 ◽  
Vol 766-767 ◽  
pp. 104-109
Author(s):  
P. Parandaman ◽  
M. Jayaraman

The present work investigates the effect of hybridization of sugarcane bagasse and banana fibers as reinforcements in the polymer matrix. Composites made from natural fibers possess favourable properties like low cost, light weight, high strength and eco-friendly nature compared to synthetic fibers. Structural applications such as aerospace and automobile industries moving towards the use of these natural composites. In this research work two lightweight composite materials were developed, one with a linear pattern and other with chopped pattern of sugarcane bagasse and banana fiber reinforcements. The developed composites were subjected to different tests to investigate their mechanical behaviour. Both the developed specimens were investigated for their tensile strength, hardness, and water absorption capacity and compared their behaviour. It is observed from the test results, the composite with the chopped fiber reinforcement possess better mechanical properties compared to the linear reinforcement.


Sign in / Sign up

Export Citation Format

Share Document