Influence Characteristics of Tool Vibration and Wear on Machined Surface Topography in High-Speed Milling

2014 ◽  
Vol 800-801 ◽  
pp. 585-589
Author(s):  
Bin Jiang ◽  
Guang Lei Cao ◽  
Ming Hui Zhang ◽  
Shou Zheng Sun ◽  
Xuan Chi Liu

Existing research on machined surface topography, only consider its response to vibration or wear certain factors, both vibration and wear impact on machined surface topography exist ambiguity and uncertainty, it cannot solve the design conflicts of machined surface topography. For this, this paper analyzes blade installation error, tool wear, vibration and deformation to reveal effects of tip space trajectory, build a three-dimensional model of machined surface topography in simulation, extract its characteristic parameters, by simulation of different amplitudes and wear, found that axis amplitude is a key factor affecting surface residual height, flank wear affects contour distribution distance significantly, by specimen milling experiments, use vibration measuring instrument and ultra-depth microscopy to obtain vibration, wear characteristics and machined surface topography parameters under different cutting parameters, then use the gray system theory to get correlation analysis of the test data, results showed that the influence of tool wear on machined surface topography is prominent than tool vibration.

2011 ◽  
Vol 188 ◽  
pp. 179-183 ◽  
Author(s):  
Yang Jun Wang ◽  
M. Zhou ◽  
Y.H. Zhao

For the purpose of investigating the effect on surface micro-topography of cutting parameters in high speed milling of SiCp/Al Composites, the high speed milling experiments were performed .The machined surface was measured by Taylor Hobson roughness tester and OLS3000 Confocal Laser Scanning Microscope. The acquired surface data was dealt with the three-dimensional roughness method. The three-dimensional root-mean-square deviation of the surface Sq and two-dimensional root-mean-square deviation Rq were compared. The effects of cutting parameters on three-dimensional roughness parameter were also investigated. The results showed that both feed rate and depth of cut have a little effect on the value of three-dimensional roughness parameter,and the cutting speed is the main affecting factor.


2011 ◽  
Vol 117-119 ◽  
pp. 1681-1688 ◽  
Author(s):  
Jin Ming Zhou ◽  
Volodymr Bushlya ◽  
Ru Lin Peng ◽  
Jan Eric Stahl

There is considerable industrial significance to understand the nature of subsurface deformation under the machined surface for correct prediction of surface properties in machined components based upon the machined conditions and material behaviors that give rise to them. In this study, high speed machining of Inconel 718 was carried with whisker reinforced ceramic cutting tool under different conditions of tool wear, coolant state and cutting parameters. The objective of the present investigation was to determine the effect of both cutting parameters and tool wear on the plastic deformation in the subsurface region of Inconel 718 after the finishing machining with above process conditions. The surface and subsurface region of machined specimens were examined using a high resolution scan electron microscope (HRSEM) and EBSD technique, microhardness measurements were also conducted on the test samples, accordingly plastic strain analysis were carried out.


2012 ◽  
Vol 500 ◽  
pp. 377-382
Author(s):  
Cheng Zhe Jin ◽  
Rui Fang

Turn-milling technology can replace turning with milling to high speed machining rotationally body parts. So, micro-turn-milling has superiority on the productivity and the quality of workpieces, and is more suitable to machine micro-shaft parts and desirable miniature parts based on the turn-milling technology. Micro-turn-milling can be used for the machining of micro-parts in its hardened state. In this paper, the influence of cutting parameters on surface topography and tool wear is presented in micro-turn-milling of micro-screw. The interaction effect of parameters to surface topography and tool wear is investigated. The results show that micro-turn-milling technology has its peculiar advantages in realizing high-speed cutting and ensuring machining quality.


2010 ◽  
Vol 29-32 ◽  
pp. 1832-1837
Author(s):  
Zhong Qun Li ◽  
Shuo Li ◽  
Ming Zhou

During milling operation, the cutting forces will induce vibrations on both the cutting tool and the workpiece, which will affect the topography of the machined surface. Based on the Z-map representation of the workpiece, an improved model is presented to predicate the 3D surface topography along with the dynamic cutting forces during an end milling operation. A numerical approach is employed to solve the differential equations governing the dynamics of the milling system. The impact of cutting parameters such as the feedrate, the axial depth of cut and the dynamic characteristic of milling system on the surface topography is investigated by simulation. The all above can provide some instructive directions to the manufacturing engineers in determining the optimal cutting conditions of an end milling operation.


Author(s):  
Iman Goldasteh ◽  
Goodarz Ahmadi ◽  
Andrea Ferro

Particle resuspension is an important source of particulate matter in indoor environments that significantly affects the indoor air quality and could potentially have adverse effect on human health. Earlier efforts to investigate indoor particle resuspension hypothesized that high speed airflow generated at the floor level during the gate cycle is the main cause of particle resuspension. The resuspended particles are then assumed to be dispersed by the airflow in the room, which is impacted by both the ventilation and the occupant movement, leading to increased PM concentration. In this study, a three dimensional model of a room was developed using FLUENT™ CFD package. A RANS approach with the RNG k-ε turbulence model was used for simulating the airflow field in the room for different ventilation conditions. The trajectories of resuspended particulate matter were computed with a Lagrangian method by solving the equations of particle motion. The effect of turbulent dispersion was included with the use of the eddy lifetime model. The resuspension of particles due to gait cycle was estimated and included in the computational model. The dispersion and transport of particles resuspended from flooring as well as particle re-deposition on flooring and walls were simulated. Particle concentrations in the room generated by the resuspension process were evaluated and the results were compared with experimental chamber study data as well as simplified model predictions, and good agreement was found.


2021 ◽  
Vol 2021 (4) ◽  
pp. 4836-4840
Author(s):  
ROBERT STRAKA ◽  
◽  
JOZEF PETERKA ◽  
TOMAS VOPAT ◽  
◽  
...  

The article compares two cutting edge preparation methods and their influence on the machined surface roughness of the difficult to cut nickel alloy Inconel 718 and the tool wear of cutting inserts made of cemented carbide. The manufacturing and preparation process of cutting inserts used in the experiment were made by Dormer Pramet. The preparation methods used in the experiment were drag finishing and brushing. Cutting parameters did not change during the whole turning process to maintain the same conditions in each step of the process and were determined based on tests for a semi-finishing operation of the turning process. To obtain durability of 25 to 30 minutes with controlled development of the tool wear the cutting parameters were determined with cooperation with the cutting inserts manufacturer.


2019 ◽  
Vol 11 (6) ◽  
pp. 168781401985318
Author(s):  
Amon Gasagara ◽  
Wuyin Jin ◽  
Angelique Uwimbabazi

In this article, a new model of regenerative vibrations due to the deflection of the cutting tool in turning is proposed. The previous study reported chatter as a result of cutting a wavy surface of the previous cut. The proposed model takes into account cutting forces as the main factor of tool deflection. A cantilever beam model is used to establish a numerical model of the tool deflection. Three-dimensional finite element method is used to estimate the tool permissible deflection under the action of the cutting load. To analyze the system dynamic behavior, 1-degree-of-freedom model is used. MATLAB is used to compute the system time series from the initial value using fourth-order Runge–Kutta numerical integration. A straight hard turning with minimal fluid application experiment is used to obtain cutting forces under stable and chatter conditions. A single-point cutting tool made from high-speed steel is used for cutting. Experiment results showed that for the cutting parameters above 0.1mm/rev feed and [Formula: see text]mm depth of cut, the system develops fluctuations and higher chatter vibration frequency. Dynamic model vibration results showed that the cutting tool deflection induces chatter vibrations which transit from periodic, quasi-periodic, and chaotic type.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Shao-Hsien Chen ◽  
Chung-An Yu

In recent years, most of nickel-based materials have been used in aircraft engines. Nickel-based materials applied in the aerospace industry are used in a wide range of applications because of their strength and rigidity at high temperature. However, the high temperatures and high strength caused by the nickel-based materials during cutting also reduce the tool lifetime. This research aims to investigate the tool wear and the surface roughness of Waspaloy during cutting with various cutting speeds, feed per tooth, cutting depth, and other cutting parameters. Then, it derives the formula for the tool lifetime based on the experimental results and explores the impacts of these cutting parameters on the cutting of Waspaloy. Since the impacts of cutting speed on the cutting of Waspaloy are most significant in accordance with the experimental results, the high-speed cutting is not recommended. In addition, the actual surface roughness of Waspaloy is worse than the theoretical surface roughness in case of more tool wear. Finally, a set of mathematical models can be established based on these results, in order to predict the surface roughness of Waspaloy cut with a worn tool. The errors between the predictive values and the actual values are 5.122%∼8.646%. If the surface roughness is within the tolerance, the model can be used to predict the residual tool lifetime before the tool is damaged completely. The errors between the predictive values and the actual values are 8.014%∼20.479%.


2010 ◽  
Vol 129-131 ◽  
pp. 256-260
Author(s):  
Yi Shu Hao ◽  
Chuang Hai ◽  
Xin Xing Zhu

Treating high speed milling theory as the guidance, this paper researched high speed milling process of bracket part based on UG NX. Combined with the structural features of bracket part, three dimensional model is built by UG NX CAD and machining processes are worked out after analysis. UG CAM module was applied to fabricate tool paths. At last, finite element analysis method is introduced to study the processing deformation by UG NX NASTRAN module, based on which measures to restrain processing deformations is advanced and processing sequences are optimized.


Sign in / Sign up

Export Citation Format

Share Document