PPS-Polymer-Composites for High Performance Rubber Components

2015 ◽  
Vol 825-826 ◽  
pp. 60-66
Author(s):  
Rico Hickmann ◽  
Olaf Diestel ◽  
Chokri Cherif ◽  
Thomas Götze ◽  
Gert Heinrich ◽  
...  

Based on their properties, PPS fibers are a promising material for reinforcing elastomeric components that are subjected to high mechanical and thermal loads. The use of this material is at present hindered because of the low adhesion between the fiber and matrix. Atmospheric pressure plasma treatments based on the dielectric barrier discharge were performed on PPS fibers using air as reactive gas for different treatment durations in order to improve the adhesion. The effects of these treatments have been characterized by determining the surface energy, and the residual tensile strength as well as by analyzing the surface chemistry. Required conditions for an improved wetting behavior and a significant increase in the polar component of the surface energy could then be identified.

2013 ◽  
Vol 750-752 ◽  
pp. 1626-1629
Author(s):  
Bo Yuan ◽  
Ying Wang ◽  
Ying Chao Ji ◽  
Qiu Hong Wang

In this paper, plasma acid was obtained by treating distilled water with dielectric barrier discharge at atmospheric pressure in order to hydrolyze cellulose. The acidity of plasma acid was studied through a single factor experiment. A plasma acid with pH value of 1.42 was obtained and used to hydrolyze microcrystalline cellulose at 80°C for 60min. Under this condition, the integrated optical density (IOD) of the hydrolysis sample was 0.589. Based on standard glucose curve, the total reducing sugar (TRS) was calculated to be 53.75mg and the TRS yield was 53.75%. The filtrate was evaporated to get the solid hydrolysis sample to be analyzed by High-performance liquid chromatography (HPLC). The results showed that the sample mainly consisted of glucose, which proved that microcrystalline cellulose could be hydrolyzed by plasma acid. Therefore, it could be concluded that it was an environmentally friendly and economical method to hydrolyze the microcrystalline cellulose by plasma acid.


2019 ◽  
Vol 7 ◽  
pp. 1-9 ◽  
Author(s):  
Bhesh Bahadur Thapa ◽  
Raju Bhai Tyata

This paper reports the electrical behaviors of atmospheric pressure plasma reactor with Dielectric Barrier Discharge (DBD) in air medium. The DBD discharge was generated in air at atmospheric pressure using Disc Electrode Geometry (DEG) reactor powered by ac voltage (0-7kV) at a frequency of 24kHz. The glass plates of thickness 1.0mm and 3.0mm were used as dielectric. The current-voltage characteristics were studied for two air gap of 2.0mm and 3.0mm by varying the applied voltages. The numbers of filamentary micro discharges were found as increased in each half cycle with increase in power. The observations of Lissajous figure of applied voltage versus electric current was used for measuring energy deposited by discharge and also compared with calculated value. Lissajous figures clearly show that the energy deposited by discharge was dependent on applied voltage. The electron density of discharge was measured by power balance method. Electron density was found in the order of 1017 per cubic meter.


2014 ◽  
Vol 805 ◽  
pp. 149-154
Author(s):  
M.A. Martinez ◽  
J. Abenojar ◽  
N. Encinas

Polyolefins are increasingly used in the construction of lightweight structures. Due to their low surface energy, it is difficult to have a proper bond with adhesives and paints. By using cold plasma treatments, these surfaces can be activated through the formation of highly reactive functional groups that can promote high strength adhesive bonds. This paper compares the results of cold plasma treatments using two techniques (low pressure and atmospheric plasma torch) applied on polypropylene and high density polyethylene. The obtained data allow the demonstration of a higher effectiveness of atmospheric plasma, with a significant increase in surface energy in both materials.


Sign in / Sign up

Export Citation Format

Share Document