Polyolefinic Surface Activation by Low and Atmospheric Pressure Plasma Treatments

2014 ◽  
Vol 805 ◽  
pp. 149-154
Author(s):  
M.A. Martinez ◽  
J. Abenojar ◽  
N. Encinas

Polyolefins are increasingly used in the construction of lightweight structures. Due to their low surface energy, it is difficult to have a proper bond with adhesives and paints. By using cold plasma treatments, these surfaces can be activated through the formation of highly reactive functional groups that can promote high strength adhesive bonds. This paper compares the results of cold plasma treatments using two techniques (low pressure and atmospheric plasma torch) applied on polypropylene and high density polyethylene. The obtained data allow the demonstration of a higher effectiveness of atmospheric plasma, with a significant increase in surface energy in both materials.

Author(s):  
Ensieh Abbasi ◽  
Jalil Fallah Mehrabadi ◽  
Mohamadreza Nourani ◽  
Yasaman Nazar Namini ◽  
Siamak Mohammadi ◽  
...  

Background and Objectives: Non-thermal atmospheric-pressure plasma or cold plasma is defined as an ionized gas. This study aimed to investigate the effect of cold plasma on Pseudomonas aeruginosa strains. Also, the expression level of the alp virulence gene before and after treatment with cold plasma was compared with the Housekeeping gene gyrA. Materials and Methods: P. aeruginosa isolates recovered from hospitalized burn patients at Shahid Motahari Burns Hos- pital, Tehran, Iran. The Kirby Bauer disk diffusion method was used to determine the antimicrobial susceptibility test. Then, the antibacterial effect of atmospheric non-thermal plasma was evaluated on P. aeruginosa in as in vitro and in vivo studies at different times on Muller Hinton agar and in mouse model (treated by plasma every day/ 90 sec). The histopathological study was evaluated by Hematoxylin-Eosin staining. Data were analyzed using SPSS software by the Chi-square test and Pvalues less than 0.05 considered as statistically significant. Results: Results indicated that non-thermal atmospheric plasma inhibited the growth of P. aeruginosa. The non-thermal helium plasma accelerates wound healing for 6 days. Results showed that cold plasma decreased virulence gene expression alp after treatment. Therefore, cold plasma can be suggested as a complementary therapeutic protocol to reduce bacterial infection and accelerate wound healing and reduce the expression of virulence genes of pathogens. Conclusion: Cold plasma showed pathogen inhibitory properties of P. aeruginosa and virulence alkaline protease and wound healing properties in animal models, so this inexpensive and suitable method can be presented to the medical community to disinfect burn wounds and improve wound healing.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 76
Author(s):  
Martin Bednarik ◽  
Ales Mizera ◽  
Miroslav Manas ◽  
Milan Navratil ◽  
Jakub Huba ◽  
...  

The goal of this research was to examine the effect of two surface modification methods, i.e., radiation cross-linking and plasma treatment, on the adhesive properties and the final quality of adhesive bonds of polypropylene (PP), which was chosen as the representative of the polyolefin group. Polymer cross-linking was induced by beta (accelerated electrons—β−) radiation in the following dosages: 33, 66, and 99 kGy. In order to determine the usability of β− radiation for these applications (improving the adhesive properties and adhesiveness of surface layers), the obtained results were compared with values measured on surfaces treated by cold atmospheric-pressure plasma with outputs 2.4, 4, and 8 W. The effects of both methods were compared by several parameters, namely wetting contact angles, free surface energy, and overall strength of adhesive bonds. Furthermore, Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) were conducted. According to our findings the following conclusion was reached; both tested surface modification methods significantly altered the properties of the specimen’s surface layer, which led to improved wetting, free surface energy, and bond adhesion. Following the β− radiation, the free surface energy of PP rose by 80%, while the strength of the bond grew in some cases by 290% in comparison with the non-treated surface. These results show that when compared with cold plasma treatment the beta radiation appears to be an effective tool capable of improving the adhesive properties and adhesiveness of PP surface layers.


2015 ◽  
Vol 825-826 ◽  
pp. 60-66
Author(s):  
Rico Hickmann ◽  
Olaf Diestel ◽  
Chokri Cherif ◽  
Thomas Götze ◽  
Gert Heinrich ◽  
...  

Based on their properties, PPS fibers are a promising material for reinforcing elastomeric components that are subjected to high mechanical and thermal loads. The use of this material is at present hindered because of the low adhesion between the fiber and matrix. Atmospheric pressure plasma treatments based on the dielectric barrier discharge were performed on PPS fibers using air as reactive gas for different treatment durations in order to improve the adhesion. The effects of these treatments have been characterized by determining the surface energy, and the residual tensile strength as well as by analyzing the surface chemistry. Required conditions for an improved wetting behavior and a significant increase in the polar component of the surface energy could then be identified.


2018 ◽  
Vol 13 (3) ◽  
pp. 155892501801300
Author(s):  
Carrie Cornelius ◽  
Marian McCord ◽  
Mohamed Bourham ◽  
Peter Hauser

Nonwoven polypropylene and cotton fabrics are grafted to a vinyl quaternary compound using atmospheric-pressure plasma. Two different atmospheric plasma devices are used -the NCAPS (North Carolina Atmospheric Plasma System), a dielectric barrier discharge device created by North Carolina State University, and a plasma device from APJeT® Inc. The addition of additives such as Mohr's salt, potassium persulfate, and diacrylates are assessed to see if graft yield can be increased. Acid dye tests, SEM, and XPS reveal successful grafting of the vinyl quaternary compound. A combination of all four additives is found to yield the highest graft yields and greatest uniformity.


2020 ◽  
Vol 7 (4) ◽  
pp. 93-96
Author(s):  
R. Jamshidi ◽  
K. Hajizadeh

Regarding the fact that cell shape indicates cell health and is of particular importance in the evaluation of new therapies, in this study, stem cell deformation during Atmospheric Pressure Plasma (APP) treatment was investigated. Given that, cell deformation is a warning of cell damage, it is therefore expected that APP-based therapy, a new modern technology that is expanding worldwide, will not lead to the deformation of normal cells. Here, the stem cells exposed to Helium-fed jet plasma, with two di erent powers of 15 and 25W. Moreover, the duration of exposure was changed (30, 50, 70, and 90 seconds) to determine the most appropriate exposure time and voltage, which maintains stem cells’ health condition. First of all, it was found that cold plasma at low power does not change the shape and elongation of stem cells. Besides, it was found that if the power of a cold plasma source is 25W, it will raise cell growth rate. In this paper, the gas ow rate of the helium plasma jet was set to 3.9 liters per minute, and a plasma source frequency of 30kHz was selected.


BioResources ◽  
2017 ◽  
Vol 12 (4) ◽  
pp. 8199-8216
Author(s):  
Carrie Cornelius ◽  
Carl Saquing ◽  
Richard Venditti ◽  
Marian McCord ◽  
Mohamed Bourham

The increased functionality of cellulose fiber based paper products is of high interest, as researchers are investigating methods to replace petroleum-based products with modified paper products. In this study, fully bleached wood pulps were treated with atmospheric pressure plasma, made into paper handsheets, and then tested for surface and other physical properties. Paper handsheets after formation were also treated with plasma to induce surface modifications. The plasma was generated using helium with fractions of either O2, CF4, or C3F6 to determine the effect of the nature of the gas. Drying methods had a greater effect on strength properties and density than plasma treatment. Plasma treatments on previously made paper increased the surface roughness, but plasma treatments on pulps prior to papermaking did not cause any roughness changes in the resulting paper. X-ray photoemission spectroscopy (XPS) revealed small increases in the oxygen to carbon ratios of oxygen enhanced plasmas for both pulp and paper treated samples. The plasma treatment showed evidence of surface fluorine in paper treated with CF4 containing plasma, but not in pulps treated with CF4 containing plasma and then made into paper.


Sign in / Sign up

Export Citation Format

Share Document