Assessment to the Solid to Liquid Ratios on the Soil Strength and Water Absorption of the Kedah’s Soil

2016 ◽  
Vol 841 ◽  
pp. 59-64 ◽  
Author(s):  
Hazamaah Nur Hamzah ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Cheng Yong Heah ◽  
Mohd Remy Rozainy Arif Zainol ◽  
Kamarudin Hussin

The purpose of this paper is to assess the solid to liquid ratios on the compressive strength and water absorption of Kedah’s soil by using geopolymerization method. Fly ash and soft soil were mixed with alkaline activators namely sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) for preparing stabilize the soil sample. The geopolymerization process for soil stabilization was synthesized by the activation of fly ash and soil with alkaline solution at four different solid to liquid ratios which were 1.5, 2.0, 2.5, and 3.0 at a specific constant ratio of Na2SiO3/NaOH solution of 0.5. The compressive strength up to 4.77 MPa was obtained at 3.0 of solid to liquid ratio and the water absorption has become increasingly lower to 2.28% as the ratio of solid to liquid increases in 7 days curing at room temperature.

2011 ◽  
Vol 110-116 ◽  
pp. 734-739 ◽  
Author(s):  
Mohd Mustafa Al Bakri Abdullah ◽  
H. Kamarudin ◽  
Omar A.K.A. Abdulkareem ◽  
Che Mohd Ruzaidi Ghazali ◽  
A.R. Rafiza ◽  
...  

Fly ash and a mixture of alkaline activators namely sodium silicate (Waterglass) and sodium hydroxide (NaOH) solution were used for preparing geopolymer. The aim of this research is to determine the optimum value of the alkaline activator/fly ash ratio. The effect of the oxide molar ratios of SiO2/Al2O3, water content of the alkaline activator and the Waterglass% content were studied for each Alkaline activator/fly ash ratio. The geopolymers were synthesized by the activation of fly ash with alkaline solution at three different alkaline activator/fly ash ratios which were 0.3, 0.35, and 0.4 at a specific constant ratio of waterglass/NaOH solution of 1.00. The geopolymers were cured at 70°C for 24 h and cured to room temperature. Results revealed that the alkaline activator/fly ash ratio of 0.4 has the optimum amount of alkaline liquid, which shows the highest rate of geopolymerization compared to other ratios. A high strength of 8.61 MPa was achieved with 0.4 of activator/fly ash ratio and 14% of waterglass content.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 565
Author(s):  
Kamil Banaszkiewicz ◽  
Tadeusz Marcinkowski ◽  
Iwona Pasiecznik

Fly ash is the main by-product of coal combustion characterized by a large specific surface area. In addition to oxides, it also contains unburned coal and trace elements. This study aimed to investigate the possibility of using fly ash from pit-coal combustion (CFA) for the treatment of benzene-contaminated soil (S). The CFA was used as a mixture with Portland cement (PC) (70% PC + 30% CFA). The soil was treated with a PC-CFA mixture in amounts of 40, 60, and 80% of soil mass. During the process, the concentration of benzene was monitored with the flame-ionization detector. Produced monoliths (S+(PC-CFA)x) were tested for compressive strength and capillary water absorption. The experiment confirmed that the PC-CFA mixture limited benzene emission. The highest reduction in benzene concentration (34–39%) was observed for samples treated with the PC-CFA mixture in an amount of 80% (S+(PC-CFA)80). The average compressive strength of monoliths S+(PC-CFA)40, S+(PC-CFA)60, and S+(PC-CFA)80 was 0.57, 4.53, and 6.79 MPa, respectively. The water absorption values were in the range of 15–22% dm.


2012 ◽  
Vol 450-451 ◽  
pp. 756-763
Author(s):  
Ri Gao Chen ◽  
Yi Lan Chen ◽  
Xin Yue Zhao ◽  
Michael W Grutzeck

As the traditional material commonly used, cement has its own limitation such as limited solidifying objects, bad stability in water, high cost and uneasy adjustment in coagulation time, not good for solidifying the waste etc.. The succeed in developing a hydroceramic-concrete for soil stabilization can take place of traditional cementing material such as conventional concrete applying and avoid the shortage of them. Here we show that a mixture of Class F fly ash, metakaolin and 8M NaOH (hydroceramic) will harden at room temperature, attaining 9.2 MPa compressive strength at 90 days, It is suggested that a hydroceramic-concrete may be used as a project material of soil stabilization as it has similar or even better compressive strength than conventional concrete.


2018 ◽  
Vol 2 (1) ◽  
pp. 26
Author(s):  
Ufafa Anggarini

The optimization synthezised of geopolymer based on fly ash materials have been done by using Taguchi method. The experimental design was done with 4 factors and 3 levels, that were the influence of Si/Al ratio, solid/liquid ratio, NaOH and the type of aggregate. Geopolymers were synthesized by sol gel method at room temperature, using fly ash as aluminasilica source and alkaline activator solutions thain consist of NaOH and Na2SiO3. The influence of Si/Al ratio studied at level of 4.00, 4.25, 4,50, solid/liquid ratio at level of 1.50, 2.33, 4.00. NaOH (%wt/%v) of 0.24, 0.40, 0.56, and the type of aggregate of Malang sand, Bojonegoro sand and granite. Based on SNR analysis and the characterization determination of higher is better, the geopolymer optimum composition was Si/Al factor at level of 3 (4.50), solid/liquid ratio level at 2 (2.33), NaOH level at 1 (0.24) and type of aggregate level at 3 (granite). The calculation of compressive strength prediction was determined at 21.01 Mpa, while the optimum compressive strength of the experimental result was found at 21 Mpa. Keywords: Geopolymer, Taguchi Method, Si/Al, Solid/Liquid, NaOH, Type of agreggate


Author(s):  
Keeerthy R Karthikeyan ◽  
Elba Helen George

In order to confront the issues related to clay for construction, some adequate ground improvement technique is important. To enhance the properties of clay, alkaline solutions such as sodium hydroxide and sodium silicate are used along with Class F fly ash, Ground Granulated Blast Furnace Slag (GGBS) and metakaolin as additives. Flyash greatly modifies the strength properties of soft soils and it contain silica and aluminium materials (pozzolans) also as a particular amount of lime, which chemically binds to soft soil and forms cement compounds. Metakaolin is a highly reactive pozzolana formed by the calcinations of kaolinite (China clay).In many civil engineering constructions, soft and weak soils are often stabilized with Ordinary Portland cement (OPC) and lime. The production processes of traditional stabilizers are energy intensive and emit an outsized quantity of CO2. Geopolymer offer a better alternative to OPC, with its high strength, low cost, low energy consumption and CO2 emissions during synthesis. Due to the major environmental impacts involved in the manufacturing of OPC, the use of industrial by-products has been encouraged. The reason for the increase in compressive strength due to GGBS can be caused by the high GGBS calcium content. These polymers are economic and, compared to many chemical alternatives, are more effective and significantly less damaging to the environment. The combined impact of fly ash, GGBS and metakaolin will boost the soil's engineering efficiency.The alkali activation of waste materials has become an important area of research in many laboratories because it is possible to use these materials to synthesize inexpensive and ecologically sound cement like construction materials.The activator solution is also very influential in the polymerization process and it's also one of the factors that determine the compressive strength. Keywords—Alkali activation, Geopolymer, fly ash, GGBS, clay, stabilization


Author(s):  
A. Z. Mohd Ali ◽  
◽  
N. A. Jalaluddin ◽  
N. Zulkiflee ◽  
◽  
...  

The production of ordinary Portland cement (OPC) consumes considerable amount of natural resources, energy and at the same time contribute in high emission of CO2 to the atmosphere. A new material replacing cement as binder called geopolymer is alkali-activated concrete which are made from fly ash, sodium silicate and sodium hydroxide (NaOH). The alkaline solution mixed with fly ash producing alternative binder to OPC binder in concrete named geopolymer paste. In the process, NaOH was fully dissolved in water and cooled to room temperature. This study aims to eliminate this process by using NaOH in solid form together with fly ash before sodium silicate liquid and water poured into the mixture. The amount of NaOH solids were based on 10M concentration. The workability test is in accordance to ASTM C230. Fifty cubic mm of the geopolymer paste were prepared which consists of fly ash to alkaline solution ratio of 1: 0.5 and the curing regime of 80℃ for 24 hours with 100% humidity were implemented. From laboratory test, the workability of dry method geopolymer paste were decreased. The compressive strength of the dry mix of NaOH showed 55% and the workability has dropped to 58.4%, it showed strength reduction compared to the wet mix method.


2011 ◽  
Vol 261-263 ◽  
pp. 416-420 ◽  
Author(s):  
Fu Ping Jia ◽  
Heng Lin Lv ◽  
Yi Bing Sun ◽  
Bu Yu Cao ◽  
Shi Ning Ding

This paper presents the results of elevated temperatures on the compressive of high fly ash content concrete (HFCC). The specimens were prepared with three different replacements of cement by fly ash 30%, 40% and 50% by mass and the residual compressive strength was tested after exposure to elevated temperature 250, 450, 550 and 650°C and room temperature respectively. The results showed that the compressive strength apparently decreased with the elevated temperature increased. The presence of fly ash was effective for improvement of the relative strength, which was the ratio of residual compressive strength after exposure to elevated temperature and ordinary concrete. The relative compressive strength of fly ash concrete was higher than those of ordinary concrete. Based on the experiments results, the alternating simulation formula to determine the relationship among relative strength, elevated temperature and fly ash replacement is developed by using regression of results, which provides the theoretical basis for the evaluation and repair of HFCC after elevated temperature.


2019 ◽  
Vol 2 (1) ◽  
pp. 50
Author(s):  
Andrie Harmaji ◽  
Claudia Claudia ◽  
Lia Asri ◽  
Bambang Sunendar ◽  
Ahmad Nuruddin

Abstract:. Suralaya power plant produces fly ash about 219.000 ton per year. Fly ash contents of silica and alumina as major components that can be used as precursors for geopolymer, a three dimensional networks aluminosilicate polymers. This research aim is to utilize fly ash for geopolymer made by mixing fly ash, fine aggregate, and alkali activator in a cubic mould and curing was carried out at room temperature for 7 and 28 days. After 28 days of curing the compressive strength of geopolymer reached 41.70 MPa. XRD characterization shows Albite (NaAlSi3O8) formation which has similarity to geopolymer compound. Fourier Transform Infra Red spectra show siloxo and sialate bond. These are typical functional groups that are found in geopolymer materials.Keyword: geopolymer, fly ash, aluminosilicate, alkali activator, albite, siloxo, sialateAbstrak: Pembangkit Listrik Tenaga Uap (PLTU) Suralaya menghasilkan fly ash (abu terbang) sekitar 219.000 ton per tahun. Fly ash memiliki silika dan alumina sebagai komponen utama yang dapat digunakan sebagai prekursor untuk geopolimer, suatu material polimer aluminosilikat tiga dimensi. Penelitian ini bertujuan untuk memanfaatkan fly ash untuk geopolimer yang dibuat dengan mencampur fly ash, agregat halus, dan aktivator alkali dalam cetakan kubik dan pengawetan dilakukan pada suhu kamar selama 7 dan 28 hari. Setelah 28 hari curing kekuatan tekan geopolimer mencapai 41,70 MPa. Karakterisasi XRD menunjukkan pembentukan Albite (NaAlSi3O8) yang memiliki kemiripan dengan senyawa geopolimer. Hasil spektroskopi Fourier Transform Infra Red (FTIR) menunjukkan ikatan siloxo dan sialate yang merupakan gugus fungsional khas yang ditemukan dalam geopolimer.Kata Kunci: geopolimer, abu terbang, aluminosilikat, alkali aktivator, albite, siloxo, sialate


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7109
Author(s):  
Wei Yang ◽  
Pinghua Zhu ◽  
Hui Liu ◽  
Xinjie Wang ◽  
Wei Ge ◽  
...  

Geopolymer binder is expected to be an optimum alternative to Portland cement due to its excellent engineering properties of high strength, acid corrosion resistance, low permeability, good chemical resistance, and excellent fire resistance. To study the sulfuric acid corrosion resistance of geopolymer concrete (GPC) with different binding materials and concentrations of sodium hydroxide solution (NaOH), metakaolin, high-calcium fly ash, and low-calcium fly ash were chosen as binding materials of GPC for the geopolymerization process. A mixture of sodium silicate solution (Na2SiO3) and NaOH solution with different concentrations (8 M and 12 M) was selected as the alkaline activator with a ratio (Na2SiO3/NaOH) of 1.5. GPC specimens were immersed in the sulfuric acid solution with the pH value of 1 for 6 days and then naturally dried for 1 day until 98 days. The macroscopic properties of GPC were characterized by visual appearance, compressive strength, mass loss, and neutralization depth. The materials were characterized by SEM, XRD, and FTIR. The results indicated that at the immersion time of 28 d, the compressive strength of two types of fly ash-based GPC increased to some extent due to the presence of gypsum, but this phenomenon was not observed in metakaolin-based GPC. After 98 d of immersion, the residual strength of fly ash based GPC was still higher, which reached more than 25 MPa, while the metakaolin-based GPC failed. Furthermore, due to the rigid 3D networks of aluminosilicate in fly ash-based GPC, the mass of all GPC decreased slightly during the immersion period, and then tended to be stable in the later period. On the contrary, in metakaolin-based GPC, the incomplete geopolymerization led to the compressive strength being too low to meet the application of practical engineering. In addition, the compressive strength of GPC activated by 12 M NaOH was higher than the GPC activated by 8 M NaOH, which is owing to the formation of gel depended on the concentration of alkali OH ion, low NaOH concentration weakened chemical reaction, and reduced compressive strength. Additionally, according to the testing results of neutralization depth, the neutralization depth of high-calcium fly ash-based GPC activated by 12 M NaOH suffered acid attack for 98 d was only 6.9 mm, which is the minimum value. Therefore, the best performance was observed in GPC prepared with high-calcium fly ash and 12 M NaOH solution, which is attributed to gypsum crystals that block the pores of the specimen and improve the microstructure of GPC, inhibiting further corrosion of sulfuric acid.


2013 ◽  
Vol 10 (1) ◽  
Author(s):  
Rofikatul Karimah

Block made of mud is a building material used in making wall for building that is made fromsand, cement, and fly ash using certain percentage mud in sand. This research aimed to know theeffect of the use of lapindo mud towards the compressive strength, the absorption of block waterwith the mud dosage in sand are: 0%, 10%, 20%, 30%, and 40%. This research was an experimentalresearch; each design was made in size 10x20x40 cm using 5% of fly ash and without fly ash.The result of this research showed that the highest compressive strength was raised in 10%mud in sand with 5% fly ash that was 195 kg/cm2 or increased about 3.44 kg/cm2 within increasingpercentage about 10.651% towards the compressive of block without lapindo mud with 5% of flyash, and was included in class I quality of block. While for the 30% and 40% mud percentage islower compared with normal compressive strength of block. The test result of water absorption oflapindo mud block showed the higher value than 20% for lapindo mud block with 5% fly ash, inframing the mud blocks as the wall, those blocks need to be soaked first because the absorptionvalue of block is higher than 20%. Lapindo mud block without 5% fly ash has bricks water absorptionless than 20%, while in framing those bricks, they don’t need to be soaked because the absorptionof brick if lower than 20%. By using fly ash in mud block, we can get the higher compressivestrength and the lower water absorption.Keyword: Porong Mud, Block, Fly Ash, Compressive Strength, Absorption


Sign in / Sign up

Export Citation Format

Share Document