scholarly journals BATAKO LUMPUR LAPINDO SEBAGAI ALTERNATIF MATERIAL PASANGAN DINDING

2013 ◽  
Vol 10 (1) ◽  
Author(s):  
Rofikatul Karimah

Block made of mud is a building material used in making wall for building that is made fromsand, cement, and fly ash using certain percentage mud in sand. This research aimed to know theeffect of the use of lapindo mud towards the compressive strength, the absorption of block waterwith the mud dosage in sand are: 0%, 10%, 20%, 30%, and 40%. This research was an experimentalresearch; each design was made in size 10x20x40 cm using 5% of fly ash and without fly ash.The result of this research showed that the highest compressive strength was raised in 10%mud in sand with 5% fly ash that was 195 kg/cm2 or increased about 3.44 kg/cm2 within increasingpercentage about 10.651% towards the compressive of block without lapindo mud with 5% of flyash, and was included in class I quality of block. While for the 30% and 40% mud percentage islower compared with normal compressive strength of block. The test result of water absorption oflapindo mud block showed the higher value than 20% for lapindo mud block with 5% fly ash, inframing the mud blocks as the wall, those blocks need to be soaked first because the absorptionvalue of block is higher than 20%. Lapindo mud block without 5% fly ash has bricks water absorptionless than 20%, while in framing those bricks, they don’t need to be soaked because the absorptionof brick if lower than 20%. By using fly ash in mud block, we can get the higher compressivestrength and the lower water absorption.Keyword: Porong Mud, Block, Fly Ash, Compressive Strength, Absorption

2021 ◽  
Vol 4 (2) ◽  
pp. 86
Author(s):  
Darul Niham Wahono ◽  
Zaenuri Arifin ◽  
Yosef Cahyo Setianto Poernomo ◽  
Zendy Bima Mahardana ◽  
Ashabul Yamin

Brick is a building material that has a function as a room sealer. Its larger size, when compared to red brick, makes bricks more in demand in the market. Improving the quality of bricks needs to be done to meet the needs of the building. The use of added materials becomes one of the things that can be considered to improve the nature and quality of bricks. This research aims to find out the strong press and absorption of bricks with the use of coconut pellet fiber. The research was conducted experimentally with the manufacture of test objects in the laboratory. The test object used is in the form of a beam of 30x15x10 cm. The percentage variation of coconut fiber is 5%, 10%, and 15% of the weight mass in bricks. The tests carried out include a strong compressive and water absorption test with reference to the Indonesian National Standard (SNI). The results of water absorption tests obtained the optimum value in bricks with a mixture of 5% fiber which is 6% of the mass of the weight of the brick, while the minimum value is in the brick, 15% fiber, which is 10%. While the compressive strength results get the optimum value on the 5% fiber mix variation, which is 20.1 kg/cm², and the minimum value on the variation of 15% fiber is 8.8 kg/cm². From these results showed that bricks with coconut pellet fiber have not been able to improve the quality of bricks.


2008 ◽  
Vol 1 (2) ◽  
pp. 113-120 ◽  
Author(s):  
A. C. Marques ◽  
J. L. Akasaki ◽  
A. P. M. Trigo ◽  
M. L. Marques

In this work it was evaluated the influence tire rubber addition in mortars in order to replace part of the sand (12% by volume). It was also intended to verify if the tire rubber treatment with NaOH saturated aqueous solution causes interference on the mechanical properties of the mixture. Compressive strength, splitting tensile strength, water absorption, modulus of elasticity, and flow test were made in specimens of 5cmx10cm and the tests were carried out to 7, 28, 56, 90, and 180 days. The results show reduction on mechanical properties values after addition of tire rubber and decrease of the workability. It was also observed that the tire rubber treatment does not cause any alteration on the results compared to the rubber without treatment.


DYNA ◽  
2021 ◽  
Vol 88 (216) ◽  
pp. 38-47
Author(s):  
Joaquín Abellán García ◽  
Nancy Torres Castellanos ◽  
Jaime Antonio Fernandez Gomez ◽  
Andres Mauricio Nuñez Lopez

Ultra-high-performance concrete (UHPC) is a kind of high-tech cementitious material with superb mechanical and durability properties compared to other types of concrete. However, due to the high content of cement and silica fume used, the cost and environmental impact of UHPC is considerably higher than conventional concrete. For this reason, several efforts around the world have been made to develop UHPC with greener and less expensive local pozzolans. This study aimed to design and produce UHPC using local fly ash available in Colombia. A numerical optimization, based on Design of Experiments (DoE) and multi-objective criteria, was performed to obtain a mixture with the proper flow and highest compressive strength, while simultaneously having the minimum content of cement. The results showed that, despite the low quality of local fly ashes in Colombia, compressive strength values of 150 MPa without any heat treatment can be achieved.


2016 ◽  
Vol 7 (5) ◽  
pp. 546-550
Author(s):  
Aurelijus Daugėla ◽  
Džigita Nagrockienė ◽  
Laurynas Zarauskas

Cement as the binding agent in the production of concrete can be replaced with active mineral admixtures. Biofuel combustion fly ash is one of such admixtures. Materials used for the study: Portland cement CEM I 42.5 R, sand of 0/4 fraction, gravel of 4/16 fraction, biofuel fly ash, superplasticizer, water. Six compositions of concrete were designed by replacing 0%, 5%, 10%, 15% 20%, and 25% of cement with biofuel fly ash. The article analyses the effect of biofuel fly ash content on the properties of concrete. The tests revealed that the increase of biofuel fly ash content up to 20% increases concrete density and compressive strength after 7 and 28 days of curing and decreases water absorption, with corrected water content by using plasticizing admixture. It was found that concrete where 20% of cement is replaced by biofuel ash has higher frost resistance.


2021 ◽  
Vol 904 ◽  
pp. 453-457
Author(s):  
Samer Al Martini ◽  
Reem Sabouni ◽  
Abdel Rahman Magdy El-Sheikh

The self-consolidating concrete (SCC) become the material of choice by concrete industry due to its superior properties. However, these properties need to be verified under hot weather conditions. The paper investigates the behavior of SCC under hot weather. Six SCC mixtures were prepared under high temperatures. The SCC mixtures incorporated polycarboxylate admixture at different dosages and prolonged mixed for up to 2 hours at 30 °C and 40 °C. The cement paste was replaced with 20% of fly ash (FA). The fresh properties were investigated using slump flow, T50, and VSI tests. The compressive strength was measured at 3, 7, and 28 days. The durability of SCC mixtures was evaluated by conducting rapid chloride penetration and water absorption tests.


2021 ◽  
Vol 27 (1) ◽  
pp. 127-134
Author(s):  
Roni Adi Wijaya ◽  
Yayuk Astuti ◽  
Septi Wijayanti

A series of tests were carried out to determine the effect of the addition of coal combustion fly ash as an additional mineral (additive) on improving the quality and compressive strength of cement according to the Indonesian National Standard (SNI 15-2049-2004). Research methods include sample preparation, manufacture of cement with 0%, 5%, 8%, 12%, and 15% fly ash variations, chemical and physical properties of cement. The parameters measured were the level of chemical composition (%) using X-Ray Fluorescence Spectroscopy (XRF) ARL 9800 OASIS, free lime content (%) by volumetry, insoluble residue level (%) by gravimetry, compressive strength (kg/cm2), and smoothness cement (cm2/g). The results showed that the addition of fly ash increased the SiO2 content of cement, thereby increasing C3S and C2S compounds which are compressive strength components of a cement. Besides, the addition of fly ash is directly proportional to IR levels, compressive strength, smoothness, and inversely proportional to free lime levels. So the addition of fly ash can improve the quality of cement by increasing chemical components, increasing compressive strength, and reducing cracking or expansion of cement.


2020 ◽  
Vol 40 (2) ◽  
Author(s):  
Daniela Eugenia Angulo-Ramírez ◽  
William Gustavo Valencia-Saavedra ◽  
Ruby Mejía de Gutiérrez

Concretes based on alkaliactivated binders have attracted considerable attention as new alternative construction materials, which can substitute Portland Cement (OPC) in several applications. These binders are obtained through the chemical reaction between an alkaline activator and reactive aluminosilicate materials, also named precursors. Commonly used precursors are fly ash (FA), blast furnace slag (GBFS), and metakaolin. The present study evaluated properties such as compressive strength, rate of water absorption (sorptivity), and chloride permeability in two types of alkaliactivated concretes (AAC): FA/GBFS 80/20 and GBFS/OPC 80/20. OPC and GBFS/OPC* concretes without alkaliactivation were used as reference materials. The highest compressive strength was observed in the FA/GBFS concrete, which reported 26,1% greater strength compared to OPC concrete after 28 days of curing. The compressive strength of alkaliactivated FA/GBFS 80/20 and GBFS/OPC 80/20 was 61 MPa and 42 MPa at 360 days of curing, respectively. These AAC showed low permeability to the chloride ion and a reduced water absorption. It is concluded that these materials have suitable properties for various applications in the construction sector.


2014 ◽  
Vol 1000 ◽  
pp. 59-62
Author(s):  
Hana Kalousová ◽  
Eva Bartoníčková ◽  
Tomáš Opravil

The presented paper deals with the issue of influence of storage conditions on the quality of conventional fly ashes which are produced by combustion of lignite. These ashes were stockpiled for long time. A borehole for sampling was made in the fly ash stock-pile. Total depth of the borehole was 20 m. Samples of fly ashes taken from every single meter were analyzed and next mechanical properties and the volume stability of materials containing these fly ashes were tested. The quality of fly ashes especially with respect to the possibility to use them as components of pastes, mortars and concretes as pozzolanic admixture or fine filler was evaluated.


2008 ◽  
Vol 32 (2) ◽  
pp. 91-102 ◽  
Author(s):  
D. Todd Griffith ◽  
Thomas G. Carne ◽  
Joshua A. Paquette

The focus of this paper is a test program designed for wind turbine blades. Model validation is a comprehensive undertaking which requires carefully designing and executing experiments, proposing appropriate physics-based models, and applying correlation techniques to improve these models based on the test data. Structural models are useful for making decisions when designing a new blade or assessing blade performance, and the process of model validation is needed to ensure the quality of these models. Blade modal testing is essential for validation of blade structural models, and this report discusses modal test techniques required to achieve validation. Choices made in the design of a modal test can significantly affect the final test result. This study aims to demonstrate the importance of the proper pre-test design and test technique for validating blade structural models.


2012 ◽  
Vol 626 ◽  
pp. 937-941 ◽  
Author(s):  
W.I. Wan Mastura ◽  
H. Kamarudin ◽  
I. Khairul Nizar ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
H. Mohammed

This paper reports the results of an experimental work conducted to investigate the effect of curing conditions on the properties of fly ash-based geopolymer bricks prepared by using fly ash as base material and combination of sodium hydroxide and sodium silicate as alkaline activator. The experiments were conducted by varying the curing time in the range of 1-24 hours respectively. The specimens cured for a period of 24 hours have presented the highest compressive strength for all ratio of fly ash to sand. For increasing curing time improve compressive strength and decreasing water absorption.


Sign in / Sign up

Export Citation Format

Share Document