Effect of Stoichiometry and Sintering Temperature on the Mechanical Properties of Zinc Ferrite (ZnxFe3-xO4)

2016 ◽  
Vol 857 ◽  
pp. 126-130
Author(s):  
S.S. Aqzna ◽  
Cheow Keat Yeoh ◽  
A.G. Supri ◽  
T.N. Atiqah ◽  
H.K. Amali ◽  
...  

The composites sample of Zinc Ferrite (ZnxFe3-xO4) were prepared by mixing zinc oxide (ZnO) and iron oxide (Fe2O3) via different stoichiometry (ratio) with ZnxFe3-xO4, for x= 0,0.2,0.4,0.6,0.8 and sintering temperature at 1000 °C, 1100 °C,1200 °C for six hours. The phase compositions of the synthesized Zinc Ferrite (ZF) were verified using X-ray Diffraction (XRD), hardness testing using hardness Vickers, density and thermal conductivity for composite was studied. The result shows the sample with ratio 0.8 and 1200 oC sintering temperature gives the highest value of thermal conductivity with 9.7614 W/m2K and the lowest thermal resistance with 0.1024 m2K / W.

2015 ◽  
Vol 804 ◽  
pp. 147-150
Author(s):  
Pratthana Intawin ◽  
Kamonpan Pengpat ◽  
Wilaiwan Leenakul ◽  
Tawee Tunkasiri

In this research, the effects of sintering temperatures on structural and bioactivity in BaFe12O19 (BF) /P2O5-CaO-Na2O bioactive glass ceramics were investigated. The BF/P2O5-CaO-Na2O bioactive glass ceramics were fabricated under various sintering temperatures in a range of 550-700 oC. X-ray diffraction (XRD) technique and the scanning electron microscopy (SEM) are used to characterize phase and microstructure. The studied samples were evaluated for mechanical properties by hardness testing. Moreover, the bioactivities of studied samples were studied by using simulated body fluid (SBF) in vitro. It was found that, the sintering temperatures are the most influential parameter on microstructure and mechanical properties of the bioactive glass ceramics. The highest density of studied ceramics was found in the sample sintered at 700 oC. The microstructural properties of the studies samples were investigated and the results were then correlated with the characteristics of sintering temperature as well as the microstructure of the bioactive glass ceramic. Moreover, the covering of bone-like apatite layer on the surface sample after a 7 day immersion in SBF suggested that the BF/P2O5-CaO-Na2O glass ceramics have acceptable bioactivities.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 218
Author(s):  
Xianjie Yuan ◽  
Xuanhui Qu ◽  
Haiqing Yin ◽  
Zaiqiang Feng ◽  
Mingqi Tang ◽  
...  

This present work investigates the effects of sintering temperature on densification, mechanical properties and microstructure of Al-based alloy pressed by high-velocity compaction. The green samples were heated under the flow of high pure (99.99 wt%) N2. The heating rate was 4 °C/min before 315 °C. For reducing the residual stress, the samples were isothermally held for one h. Then, the specimens were respectively heated at the rate of 10 °C/min to the temperature between 540 °C and 700 °C, held for one h, and then furnace-cooled to the room temperature. Results indicate that when the sintered temperature was 640 °C, both the sintered density and mechanical properties was optimum. Differential Scanning Calorimetry, X-ray diffraction of sintered samples, Scanning Electron Microscopy, Energy Dispersive Spectroscopy, and Transmission Electron Microscope were used to analyse the microstructure and phases.


2012 ◽  
Vol 476-478 ◽  
pp. 1031-1035
Author(s):  
Wei Min Liu ◽  
Xing Ai ◽  
Jun Zhao ◽  
Yong Hui Zhou

Al2O3-TiC-ZrO2ceramic composites (ATZ) were fabricated by hot-pressed sintering. The phases and microstructure of the composites were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The relative density and mechanical properties (flexural strength, fracture toughness and Vicker’s hardness) of the composites were tested. The results show that the microstructure of the composites was the gray core-white rim. With the increase of sintering temperature, the relative density and mechanical properties of the composites increased first and then decreased. The composite sintered at 1705°C has the highest synthetical properties, and its relative density, flexural strength, fracture toughness and Vickers hardness are 98.3%,970MPa,6.0 MPa•m1/2and 20.5GPa, respectively.


2013 ◽  
Vol 48 (3) ◽  
pp. 213-216 ◽  
Author(s):  
S Parveen ◽  
SA Jahan ◽  
S Ahmed

Considering the demand of ceramic stain colours in Bangladesh, an attempt has been taken to develop iron-chromium-zinc pigment based ceramic stain colour of red-brown shade which could be used as an import substitute material in the local ceramic industries. The desired shade of red-brown stain was synthesized from an equimolar mixture of pure chromium oxide (Cr2O3), iron oxide (Fe2O3) and zinc oxide (ZnO). The developed stain was characterized by X-ray diffraction (XRD) technique. The characteristic of the stain complied with the chemical durability. Moreover, chromium leaching was below the permissible exposure limit which makes it as a promising ceramic stain to be used in our ceramic industries. DOI: http://dx.doi.org/10.3329/bjsir.v48i3.17334 Bangladesh J. Sci. Ind. Res. 48(3), 213-216, 2013


2012 ◽  
Vol 05 ◽  
pp. 488-495 ◽  
Author(s):  
S. Izadi ◽  
Gh. Akbari ◽  
K. Janghorban ◽  
M. Ghaffari

In this study, mechanical alloying (MA) of Fe -50 Al , Fe -49.5 Al -1 B , and Fe -47.5 Al -5 B (at.%) alloy powders and mechanical properties of sintered products of the as-milled powders were investigated. X-ray diffraction (XRD) results showed the addition of B caused more crystallite refinement compared to the B -free powders. To consider the sintering and ordering behaviors of the parts produced from cold compaction of the powders milled for 80 h, sintering was conducted at various temperatures. It was found that the sintering temperature has no meaningful effect on the long-range order parameter. The transformation of the disordered solid solution developed by MA to ordered Fe - Al - ( B ) intermetallics was a consequence of sintering. Also, the nano-scale structure of the samples was retained even after sintering. The microhardness of pore-free zones of the nanostructured specimens decreased by increasing the sintering temperature. Moreover, the sintering temperature has no effect on the compressive yield stress. However, the fracture strain increased by increasing the sintering temperature. The samples containing 1 at.% B showed more strain to fracture compared with the B -free and 5 at.% B samples.


2013 ◽  
Vol 357-360 ◽  
pp. 1353-1357
Author(s):  
Xiao Li Ji ◽  
Zhuo Chen

High-temperature foam ceramics were produced from sludge, Zhongxiang porcelain sand, shale and sand, with addition of SiC 0.15%~0.40% as foaming agent, respectively, sintered at 1130°C~1160°C. The phase composition and micro structure of sintered samples were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and density, compressive strength and thermal conductivity were evaluated. The results showed that the main phase of amorphous phase plagioclase in sintered samples and interior of samples with a large number of uniformly distributed closed pores, rose sintering temperature and increased SiC addition leading to pores size enlarged and density, compressive strength and thermal conductivity diminished.


2015 ◽  
Vol 655 ◽  
pp. 68-71
Author(s):  
Yuan Yuan Zhu ◽  
Jin Jia ◽  
Ai Guo Zhou ◽  
Li Bo Wang ◽  
Qing Feng Zan

Layered ternary compounds Ti3SiC2combines attractive properties of both ceramics and metals, and has been suggested for potential engineering applications. Near-fully dense Ti3SiC2bulks were sintered from commercial Ti3SiC2powders by hot press at 1350°C-1600°C for 60-120min under Ar atmosphere in this paper. The phase compositions and morphology of the as-prepared samples were evaluated by X-Ray diffraction (XRD) and scanning electron microscopy (SEM). And the mechanical properties were measured by Three-Point bending method. It was found that the Ti3SiC2had only a little of decomposition at sintering temperature above 1350°C. And effects of sintering temperature and holding time on the morphology of the bulk Ti3SiC2are not obvious. Relative density of 98% and flexural strength of 480MPa were obtained for the Ti3SiC2samples sintered at 30MPa and 1400°C for 90min.


2015 ◽  
Vol 815 ◽  
pp. 297-300 ◽  
Author(s):  
Xing Ping Fan ◽  
Ben Ju Wang ◽  
Xiao Qing Ren ◽  
Fu Chang Peng

The medical Ti-20Mo alloys were fabricated by powder metallurgy. The effects of sintering temperature on the phase, the morphology and the mechanical properties of Ti-Mo alloys were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and mechanical properties test methods. The results showed that after sintering at 1200 °C, the microstructure of Ti-Mo alloys mainly consisted of α phase. The increasing sintering time could promote α→β phase transition, thus the flexural strength and the elastic modulus of Ti-Mo alloys could be controlled. When the sintering temperature was 1300 °C, molybdenum content was 20%, the bending strength and the compressive strength of Ti-20Mo alloy were 1369MPa and 2602MPa respectively, and the elastic modulus was 3.4GPa. It may be concluded that the Ti-20Mo alloys is prospective prostheses materials.


2012 ◽  
Vol 445 ◽  
pp. 982-987 ◽  
Author(s):  
Oguzhan Gunduz ◽  
Zeeshan Ahmad ◽  
S. Salman ◽  
Ahmet Talat Inan ◽  
Nazmi Ekren ◽  
...  

The use of bovine hydroxyapatite (BHA) provides an alternative approach in bioceramics based on natural resources, time and cost efficiency. In this study, composites of calcinated bovine derived BHA were utilized. These were doped with known quantities of boron based bioglass (5 and 10 wt. %) and a range of composites were prepared at selected sintering temperatures (1000-1300 °C). The resulting structures were tested for several mechanical properties (porosity, compression and microhardness). Micro-structural analysis (electron microscopy and x-ray diffraction) was also performed on these samples, and these findings were correlated with results obtained from mechanical tests. The results indicate that there is a positive correlation between compression strength and sintering temperature and the optimal properties are obtained at a temperature of 1200°C and a boron oxide bioglass doping content of 5 wt. %.


2007 ◽  
Vol 336-338 ◽  
pp. 958-960
Author(s):  
Yang Song ◽  
Chang An Wang ◽  
Chun Qing Peng ◽  
Yong Huang

High-pure bulk Ti3SiC2 samples were fabricated by directly hot-pressing (HP) high-pure Ti3SiC2 powder without any additives at 1200°C to 1500°C for 0.5–2 hours in flow argon atmosphere. X-ray diffraction (XRD) and scanning electron microscope (SEM) were used for phase identification and microstructure evaluation. The fabricated Ti3SiC2 materials have relative high density with high purity, flexural strength of 500-700MPa and fracture toughness of 9-12MPa·m1/2. The influence of sintering temperature and soaking time on the mechanical properties of Ti3SiC2 materials was discussed. The sintering mechanism for Ti3SiC2 powder without any additives was considered to be related with the fragile-ductile transformation of Ti3SiC2 at 1100°C.


Sign in / Sign up

Export Citation Format

Share Document