Development of Seamless Pipe Based on Al/Al2O3 Composite Produced by Stir Casting and Centrifugal Casting

2016 ◽  
Vol 857 ◽  
pp. 179-182 ◽  
Author(s):  
Salahuddin Junus ◽  
Anne Zulfia

Aluminum with Al2O3 material has high strength and light weight. In this study, the aluminum is used with Al2O3 material as an alternative material seamless pipe. The making of this material seamless pipe is through the stir casting process and centrifugal casting process. The results show that the addition of reinforcing and spin method increases the mechanical properties of the cast. Influences of process-variables are analyzed using the microstructure observation. The observations show that there formed a new phase, i.e. MgO and MgAl2O4. The new phase will improve wettability and mechanical properties of the composites. The hardness value of composites growing with the increasing of the Vf% Al2O3 and the centrifugal process. The highest hardness is achieved by 47 HRB with 5%Vf Al2O3-3 wt% Mg. Expected results of aluminum composite with ceramic particles reinforcement design is to obtain a composite material, which have superior mechanical properties, such as strength, hardness, high temperature resistant and light weight. The material can be applied as an alternative material for tube and pipe products. Initially, the product materials are made of steel and now can be replaced using composite Al/Al2O3.

Author(s):  
Anubhav Coyal ◽  
N. Yuvraj ◽  
Ravi Butola ◽  
KapilDev Pandey ◽  
Tusharjeet Singh Kalra

Aluminium is one of the most common metals in the world and its use is increasing day by day in many industries mostly in space industry and automobile industry because of its light weight and high strength capabilities. Aluminium-based alloys have great potential for cost saving application due to their light weight combine with high specific strength and corrosion resistance, as well as good castability. This paper mainly emphasis with the fabrication of Aluminium composites with SiC particles and jute ash particles. Hardness and tensile properties of the prepared Aluminium composite were determined before and after addition of SiC and Jute Ash particulates to find the extent in improvement of properties. SEM images have shown the grain boundaries formation. Results shows that the tensile strength is maximum in case of composite with SiC with value of 123MPA when compared to unreinforced 6061Al matrix with strength of 64MPa.


2010 ◽  
Vol 638-642 ◽  
pp. 1541-1545 ◽  
Author(s):  
Yuichi Ienaga

In order to realize large-scale Mg-Zn-Y alloys with high strength and high heat resistance, we have developed a unique casting process to produce a large homogeneous ingot investigating the mechanical properties of the extruded alloys. First homogeneous ingots (335 mm x 850 mm) were prepared by a unique stir casting process. Then large-scale extruded alloys (100 mm) were prepared at 648 K with the extrusion ratio of 10. The Mg-Zn-Y alloys have exhibited higher yield and fatigue strengths than those of aluminum alloys. The yield strengths of the aluminum alloys have decreased drastically above 473 K, whereas those of the Mg-Zn-Y alloys have not. It is noteworthy that the yield strength (200 MPa) and the fatigue strength (75 MPa) of the Mg-Zn-Y alloys at 523 K are about twice and 1.2-1.4 times as high as those of the aluminum alloys respectively. Moreover, the creep strengths have been equivalent or higher than those of aluminum alloys. From the above results, we have verified that even being made by the large-scale extrusion, the Mg-Zn-Y alloys possess higher strength than those of heat resistant aluminum alloys.


2020 ◽  
Vol 22 (1) ◽  
pp. 357-370 ◽  
Author(s):  
S. Sakthivelu ◽  
P. P. Sethusundaram ◽  
M. Meignanamoorthy ◽  
M. Ravichandran

AbstractMetal is the one of the important material in engineering materials because of their high strength to weight ratio. However the pure metals cannot be used as engineering materials due to their ductile property. So, to improve their mechanical properties, some of the high strength materials (not metals) were added as reinforcement to improve the mechanical properties of pure metals and the newly developed material is called as metal matrix composites. At present, Aluminium, Copper, Magnesium, Titanium and Iron have been used as matrix materials and materials like TiC, SiC, B4C, WC, Cr3 C, TiO2, ZrO2, Gr, MoS2 and Si3N4 have been used as reinforcements. There are many processing techniques to fabricate metal matrix composites namely stir casting, ultra-sonic assisted casting, compo-casting, rheo casting, powder metallurgy technique, etc,. Among these, stir casting process is the most suitable and economical method to fabricate the metal matrix composites. In this article, an effort has been made to review the work of various researchers to fabricate metal matrix composites through stir casting process.


2020 ◽  
pp. 002199832098080
Author(s):  
Dipankar Dey ◽  
Abhijit Bhowmik ◽  
Ajay Biswas

Particulate reinforced aluminium matrix composites are one of the most attractive approaches for applications where high strength and hardness combinations are necessary. The aspiration of this study is to investigate the effect of titanium diboride addition on physical and mechanical properties of Al2024-TiB2 composites manufactured using stir casting route, by varying the weight percentages (wt.%) (0, 3, 6 and 9 percent) of titanium diboride particulates. During the casting process, stirring time and speed were kept constant and same for all the composites. Microstructural analysis demonstrates uniformity in TiB2 distribution and also strong matrix-reinforcement bonding which can be as a result of magnesium addition and preheating of titanium diboride particles before incorporating into the molten aluminium. With an increment in the wt.% of TiB2 particulates, hardness and tensile strength of the prepared composites improved, a significant improvement in hardness as well as tensile strength is encountered in Al2024-9% TiB2 composite, which is 44.94% and 35.49% higher than Al2024 matrix alloy, respectively. SEM analysis of the fractured surfaces revealed that the mode of fracture of unreinforced material is purely ductile but reinforced material fractured by nucleation of cracks and plastic deformation.


2020 ◽  
Vol 1000 ◽  
pp. 160-166
Author(s):  
Nabila Akmalita Khairul Islam ◽  
Nayona Ega Wicaksana ◽  
Anne Zulfia Syahrial

Aluminium Matrix Composites (AMCs) made by A356 as matrix and nanoAl2O3 as reinforced are widely used for high performance application because of light weight and alumina has good performance at high temperature. In this study, the nanoAl2O3 used varied from 0.1 vf-% to 1.2 vf-%, which subsequently determined the optimum point. In addition, the magnesium with 10% are added as a wetting agent between aluminium and nanoAl2O3 as reinforced. Stir casting process is carried out for 2 minutes and 4 minutes for the degassing process using argon gasses then pouring molten metal in to the mold at 800°C. The effect of nanoAl2O3 on the mechanical properties and microstructure of the composites was investigated. The result showed that the tensile strength decreased with the addition of nanoAl2O3 but the hardness increased. Increasing of hardness mainly caused by grain refinement, and particle strengthening which act as obstacles to the motion of dislocations. Addition of nanoAl2O3 as reinforced also tend to form microporosity and agglomeration which would decrease the tensile strength of composites. The optimum strength was reached by 0.5 %Vf nanoAl2O3 with the value of 140 MPa and hardness of 46 BHN which was supported by low porosity level. Keyword : Al A356, Al2O3, nanoComposite, Stir Casting


The present work was planned to evaluate the mechanical properties of alumina reinforced aluminium alloy such hardness and compression behavior of al2o3 /aa7075 alloy metal matrix composites. Both, experimental and finite element analyses were carried out to establish tensile behaviour of the composites with different weight percentage of al2o3 fabricated by the stir casting process. The results concluded that addition of alumina to the aa7075 improves the mechanical properties of the composite. Further the results of FEA simulation of the composites are close to the actual results which shows that cost and time can be reduced if FEA is performed


2018 ◽  
Vol 877 ◽  
pp. 50-53 ◽  
Author(s):  
Vinayashree ◽  
R. Shobha

Aluminium composites are in predominant use due to their lower weight and high strength among the MMC’s. Aluminium 6061 is selected as matrix and E-glass fiber is selected as reinforcement. Fabrication of composite is done by stir casting method. Each fabrication carries the E-glass reinforcement content varied from 2% to 10%. The present article attempts to evaluate the mechanical properties of E-glass fibre reinforced composite and study the effect of reinforcement on the matrix alloy through mechanical properties. When compared to ascast mechanical properties the UTS has increased from 74.28 N/sq mm to 146.8 N/sq mm for a composite at 6% E-glass. The hardness of as-cast has also increased from 22 RHB to 43 RHB at 6% E-glass and the wear of composite has exhibited a decreasing tend with increase in reinforcement content along the sliding distance. The results are analyzed in certain depth in the current paper. The mechanical properties of composites have improved with the increase in the weigh percentage of glass fiber in the aluminium matrix.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Lokanadham Dharmana ◽  
Venkata Subbaiah Kambagowni

Purpose This study aims to develop the Al-Si-Mg metal matrix composite, reinforced distinctly with lime stone powder (LSP; 12% by weight) and Al2O3 (12% by weight), and compare their mechanical properties and tribological performance. Design/methodology/approach The composites are fabricated through stir casting process. In view of the previous work, the Al-LSP composite with LSP reinforcement (12 Wt.%) shows enhanced mechanical properties and tribological performance, as compared with other weight percentages. Findings Though the Al-LSP composite is less expensive, it shows similar hardness, tensile strength and specific strength, when compared with Al- Al2O3 composite. However, the Al-LSP composite exhibits significant enhancement of above three properties, when compared with Al-Si-Mg metal. The systematic factorial design of experiments is obtained through Taguchi OA [L9]. The tribological performance is estimated through wear rate (WR-mm3/m) and coefficient of friction (CF) by varying the operating parameters of sliding distance (SD), load (L) and sliding velocity (SV). According to ANOVA results, the optimal condition of WR for all the tested materials is L1SD3SV1. Further, the optimal condition of CF is L1SD1SV3 for Al-LSP and Al-Si-Mg metal, while L2SD3SV2 is for Al-Al2O3 composite. The regression equation predicts the measured experimental values within error band of ± 8 percentage. Originality/value A comparison of two composite materials (Al-LSP and Al-Al2O3) with same weight fractions (12%) shows almost same trend in both the mechanical and tribological testing process. However, the developed Al-LSP composite exhibited better properties than the Al-Al2O3 and Al-base. Therefore, Al-LSP can be suggested for automotive applications (i.e., connecting rod, cylinder liners, camshaft) and structural applications (such as frames, over hanging supports), without compromising in desirable original with properties of constituents in the new material, which is achievable for looking to the end uses.


Sign in / Sign up

Export Citation Format

Share Document