Stochastic Simulation of Tape Grinding for Wafer-Like Workpiece

2016 ◽  
Vol 874 ◽  
pp. 91-96
Author(s):  
Keita Shimada ◽  
Ayaka Watanabe ◽  
Yoshifumi Takasu ◽  
Masayoshi Mizutani ◽  
Tunemoto Kuriyagawa

Advanced semiconductor materials including silicon carbide and gallium nitride possess excellent properties like high hardness, and high heat and chemical resistance compared to silicon. Such properties reversely prevent efficient production of wafers, therefore a new wafer finishing method, tape grinding, is developed to improve productivity. This paper proposes a simulation method of tape grinding, which method is developed by modifying the stochastic approach developed for plunge grinding. The distribution of abrasive grains on the grinding tape is represented by number density, and the material existence probability that is represented by Abbott-Firestone curve is modified by considering machining parameters. Tape grinding process were then conducted to confirm the calculation method.

Alloy Digest ◽  
1968 ◽  
Vol 17 (10) ◽  

Abstract HOWMET No. 3 is a cobalt-base alloy having high hardness and compressive strength, high heat and corrosion resistance, along with excellent abrasion and wear resistance. It is recommended for bushings, scrapers, valve parts, and other machinery components. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Co-56. Producer or source: Howmet Corporation Metal Products Division.


2005 ◽  
Vol 492-493 ◽  
pp. 459-464 ◽  
Author(s):  
Shin-ichiro Tsuru ◽  
Noriyuki Hayashi ◽  
Tomohiko Onoda ◽  
Yasushi Sakamoto ◽  
Masanori Hara

A new numerical method to simulate the centrifugal process of fabricating functionally graded materials (FGMs) from solid-particles/viscous-matrix mixtures is proposed, and the simulation method was successfully applied to a practical fabrication process of FGM from an alumina-fillers/epoxy-resin mixture. Gradient profiles of dielectric constant of the resultant FGM were estimated by using the proposed method and compared with the experimental ones, resulting in reasonable agreement between them. Based on the numerical results, gradient pro- files of the number density and size of the dispersed fillers were confirmed, and contribution of the filler size toward the gradient in the packing fraction was demonstrated. It is concluded that the gradient in the filler distribution can be intentionally regulated by changing not only the centrifugal conditions, but also the size distribution of the fillers.


2020 ◽  
Vol 2020 (1) ◽  
pp. 000302-000306
Author(s):  
Yuta Akasu ◽  
Emi Miyazawa ◽  
Tetsuya Enomoto ◽  
Yasuyuki Oyama ◽  
Shogo Sobue ◽  
...  

Abstract We have developed a new temporary bonding film (TBF) and new debonding system with Xe flash light irradiation, named photonic release system, for advanced package assembly process. Since new TBF has a high Tg over 200 °C after curing and shows good chemical resistance to developer, resist stripper, and plating chemicals, no delamination, voiding, and swelling were observed after thermal and chemical treatment in the bonded structure of wafer and glass carrier. In addition, by adopting a metal-sputtered glass carrier, wafer could be debonded by Xe flash light irradiation in less than 1 ms through the glass carrier with no damage. Residual TBF on the wafer surface could be peeled off smoothly at ambient temperature without residue on the wafer. In this research, we also demonstrated the good applicability of this temporary bonding film to the typical packaging process by using test vehicle including 12 inch mold wafer and the advantage of photonic release system.


2020 ◽  
Vol 14 (1) ◽  
pp. 18-25
Author(s):  
Haruhiko Suwa ◽  
Soushi Sakamoto ◽  
Masafumi Nagata ◽  
Kazuhiro Tezuka ◽  
Tetsuo Samukawa ◽  
...  

Sintered tungsten carbide which has high hardness and high heat resistance, has been widely used in molds and dies. Research on the development of a cutting technology for sintered tungsten carbide (sintered WC-Co alloy) has been pursued mainly with the use of a turning process. We focused on building an efficient milling method for sintered tungsten carbide by using diamond-coated ball end tools, and have investigated their basic properties under specific cutting conditions. This study extends our previous work by enhancing cutting distance in the milling of sintered tungsten carbide, especially that with a “fine” WC grain. The surface roughness of cut workpieces is evaluated from the point of view of the quality of surface roughness. A series of cutting experiments under different cutting conditions were carried out, and the possibility of deriving a suitable cutting condition for the ball end milling of sintered tungsten carbide is discussed.


2013 ◽  
Vol 572 ◽  
pp. 221-224
Author(s):  
Dan Feng Du

Carbonized Micron Wood Fiber (CMWF) has many merits of high filtration efficiency, low cost, green environmental protection and so on. Besides, it also has the properties of activated carbon, which makes its adsorption ability for nanoparticles emitted by a diesel engine much stronger. In this paper, the adsorption number density of the nonoparticles in the CMWF filter under the different conditions is simulated based on Grand Canonical Ensemble Monte Carlo Method (GCEMC). Moreover, the result of simulation is validated by a engine bench experiment. Theoretical deduction and experiment results both prove the simulation method can be applied to simulate the adsorption process of the nanopaticles.


2010 ◽  
Vol 443 ◽  
pp. 318-323 ◽  
Author(s):  
Han Lian Liu ◽  
Chuan Zhen Huang ◽  
Bin Zou

A multi-scale and multi-phase nanocomposite ceramic cutting tool material Al2O3/TiC/TiN(LTN) with high comprehensive mechanical properties has been successfully fabricated by means of adding micro-scale TiC and nano-scale TiN particles. The cutting performance and wear mechanisms of this advanced ceramic cutting tool were researched by turning two kinds of hardened steel 40Cr and T10A respectively. Compared with the commercial ceramic tool LT55, LTN showed a superior wear resistance with certain machining parameters. The machining tests indicated that the new materials tool is suitable for continuously dry cutting of hardened steel with high hardness at high speed.


Alloy Digest ◽  
1962 ◽  
Vol 11 (5) ◽  

Abstract Kentanium K162B is a titanium carbide cermet having high heat and oxidation resistance along with high hardness and abrasion resistance. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive strength as well as fracture toughness, creep, and fatigue. It also includes information on high temperature performance and corrosion resistance as well as machining and joining. Filing Code: Ti-33. Producer or source: Kennametal Inc..


2021 ◽  
pp. 204141962098855
Author(s):  
Rongzheng Xu ◽  
Li Chen ◽  
Jinhua Zhang ◽  
Hengbo Xiang ◽  
Qin Fang

Depleted uranium (DU) has surprising physical properties such as a high density, high hardness, and high toughness. A numerical method was developed in AUTODYN to study the penetration performance of a shaped charge with a liner made of DU with 0.75% titanium. By comparing different parameters and results from different models, the strength model suitable for DU was determined. According to available experimental data, the geometric strains in the strength models for DU and the steel target were calibrated. The characteristics of the DU liner, employed in a finished shaped charge instead of a copper liner, were optimized by tuning different parameters, and the performance of this optimal liner was verified through relevant tests. Moreover, in agreement with the optimized computational model and structural studies, a novel structure for the shaped charge was proposed that aimed to achieve a penetration depth of eight charge diameters. Different penetration depths were obtained by changing specific parameters, and the influence of standoff on the penetration depth was also studied. By evaluating the best penetration performance, the optimal structure for the shaped charge was finally determined. These results can have a great impact on future experimental tests and engineering applications of DU.


2014 ◽  
Vol 945-949 ◽  
pp. 181-184
Author(s):  
Hui Xu ◽  
Zhong Dong Yin

Dry-type transformer is a high electric strength, high mechanical strength and high heat intensity transformer. With the acceleration of our city and countryside grid construction and the energy saving requirement in power industry, the application of dry-type transformer is expanding. Also, society proposes a higher standard in dry-type transformer. To improve its working capacity and reduce power loss further, we need to analyses its inner working conditions. This thesis uses finite element software ANSYS to build a model of dry-type transformer and gets its power loss and temperature distribution under different working capacity. After comparing this simulation results with experimental results, the accuracy of simulation method is proved. This simulation provides a structure optimization method of dry-type transformer. It can reduce design cycle and cost, help to spread the application of dry-type transformer.


2016 ◽  
Vol 686 ◽  
pp. 155-160
Author(s):  
Marcel Kuruc ◽  
Juraj Vagovský ◽  
Jozef Peterka

Poly-crystalline cubic boron nitride (PCBN) is one of the hardest known material. Therefore only advanced methods are able to treat such material. Advanced machining methods, proper for machining of hard and brittle materials (such as glass and ceramics) include rotary ultrasonic machining (RUM). However, high hardness of workpiece cause higher loads and it could negatively affect achievable accuracy and surface topography. Machine loads are affected by both: machined material and machining parameters. This contribution investigates influence of machining parameters, such as spindle speed, feed rate and depth of cut, on loads of machine tool during machining of PCBN by rotary ultrasonic machining.


Sign in / Sign up

Export Citation Format

Share Document