Parametric Investigation of Mooney-Rivlin Material Constants on Silicone Biocomposite

2017 ◽  
Vol 882 ◽  
pp. 51-55 ◽  
Author(s):  
Siti Humairah Kamarul Bahrain ◽  
Jamaluddin Mahmud

Hyperelastic materials are unique materials that have high tendency to stretch and its highly non-linear behaviour is commonly investigated using hyperelastic constitutive models. The aim of this paper is to investigate the sensitivity of Mooney-Rivlin material constants; C1 and C2 values in order to observe the behavior and pattern of the stress-stretch graph for silicone-kenaf composite. There were no previous studies done in regards to assess the mechanical behaviour of the stress-stretch curve for silicone-kenaf biocomposite by varying the Mooney-Rivlin material constants. The material constant, C1 and C2 are varied into few cases and the patterns of stress-stretch curves are studied. It was found that variations of C1 and C2 material constants could contribute differently on the mechanical properties of silicone-kenaf composite. Thus, the results and findings of this study could be further enhanced by future study to gain deeper understanding on the hyperelastic materials behaviour and Mooney-Rivlin hyperelastic constitutive model.

2016 ◽  
Vol 3 (9) ◽  
pp. 160365 ◽  
Author(s):  
Kaveh Laksari ◽  
Danial Shahmirzadi ◽  
Camilo J. Acosta ◽  
Elisa Konofagou

This study aims at determining the in vitro anisotropic mechanical behaviour of canine aortic tissue. We specifically focused on spatial variations of these properties along the axis of the vessel. We performed uniaxial stretch tests on canine aortic samples in both circumferential and longitudinal directions, as well as histological examinations to derive the tissue's fibre orientations. We subsequently characterized a constitutive model that incorporates both phenomenological and structural elements to account for macroscopic and microstructural behaviour of the tissue. We showed the two fibre families were oriented at similar angles with respect to the aorta's axis. We also found significant changes in mechanical behaviour of the tissue as a function of axial position from proximal to distal direction: the fibres become more aligned with the aortic axis from 46° to 30°. Also, the linear shear modulus of media decreased as we moved distally along the aortic axis from 139 to 64 kPa. These changes derived from the parameters in the nonlinear constitutive model agreed well with the changes in tissue structure. In addition, we showed that isotropic contribution, carried by elastic lamellae, to the total stress induced in the tissue decreases at higher stretch ratios, whereas anisotropic stress, carried by collagen fibres, increases. The constitutive models can be readily used to design computational models of tissue deformation during physiological loading cycles. The findings of this study extend the understanding of local mechanical properties that could lead to region-specific diagnostics and treatment of arterial diseases.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Hang Lin ◽  
Linyuan Liang ◽  
Yifan Chen ◽  
Rihong Cao

The constitutive model of rock is closely connected with the mechanical properties of rock. To achieve a more accurate quantitative analysis of the mechanical properties of rock after the action of freeze-thaw cycles, it is necessary to establish the constitutive models of rock subjected to freeze-thaw cycles from the view of rock damage. Based on the assumption of rock couple damage, this study established a statistical damage constitutive model of rock subjected to freeze-thaw cycles by combining the lognormal distribution, which is commonly used in engineering reliability analysis, and the strain strength theory. Then, the coordinates and derivative at the peak of the stress-strain curve of the rock after the action of freeze-thaw cycles were obtained through experiments to solve the statistical distribution parameters με and S of the model, whereafter, the theoretical curves by the established model were compared with the experimental curves to verify the validity of it, which shows a great agreement. Finally, the sensitivity analysis of the statistical distribution parameters was implemented. The results indicate that με reflects the strength of the rock, which shows a positive relation, and S stands for the brittleness of the rock, which shows a negative relation.


Author(s):  
James P. DeMarco ◽  
Erik A. Hogan ◽  
Calvin M. Stewart ◽  
Ali P. Gordon

Constitutive modeling has proven useful in providing accurate predictions of material response in components subjected to a variety of operating conditions; however, the high number of experiments necessary to determine appropriate constants for a model can be prohibitive, especially for more expensive materials. Generally, up to twenty experiments simulating a range of conditions are needed to identify the material parameters for a model. In this paper, an automated process for optimizing the material constants of the Miller constitutive model for uniaxial modeling is introduced. The use of more complex stress, strain, and temperature histories than are traditionally used allows for the effects of all material parameters to be captured using significantly fewer tests. A graphical user interface known as uSHARP was created to implement the resulting method, which determines the material constants of a viscoplastic model using a minimum amount of experimental data. By carrying out successive finite element simulations and comparing the results to simulated experimental test data, both with and without random noise, the material constants were determined from 75% fewer experiments. The optimization method introduced here reduces the cost and time necessary to determine constitutive model constants through experimentation. Thus it allows for a more widespread application of advanced constitutive models in industry and for better life prediction modeling of critical components in high-temperature applications.


2011 ◽  
Vol 243-249 ◽  
pp. 2211-2215
Author(s):  
Dong Mei Yang ◽  
Xiang Bo Qiu

Cyclic loads are commonly encountered in geotechnical engineering; however most constitutive models do not account for the effect that such loads can have on the mechanical behaviour of soils and rocks. This work is concerned with the behaviour of jointed rock and, as the overall mechanical behaviour of jointed rock is usually dominated by the mechanical behaviour of the joints, it is focused on the behaviour of rock joints under cyclic loads. In particular, an extension of the existed constitutive model for cyclically loaded rock joints is presented. Variations of rock joint stiffness in both the normal and the shear directions of loading due to surface degradation are taken into account. The degradation of asperities of first and second order is considered, while a new relation is proposed for the joint stiffness in the normal direction during unloading. Numerical simulation results show good agreement of model predictions with existing experimental results.


1996 ◽  
Vol 69 (5) ◽  
pp. 781-785 ◽  
Author(s):  
Mary C. Boyce

Abstract The Arruda and Boyce eight-chain network constitutive model for rubber elastic materials is compared to the new Gent constitutive model for rubber elasticity. The salient features of each of the two models are compared. The ability of both models to predict three dimensional large strain deformation is demonstrated showing the near equivalence of these two model constructions as well as their abilities to predict complex three-dimensional deformation with only two material constants.


2017 ◽  
Vol 84 (5) ◽  
Author(s):  
Yue Gao ◽  
Zhanli Liu ◽  
Zhuo Zhuang ◽  
Keh-Chih Hwang

The anisotropic poroelastic constitutive model is reexamined in this article. The assumptions and conclusions of previous works, i.e., Thompson and Willis and Cheng, are compared and clarified. The micromechanics of poroelasticity is discussed by dividing the medium into connected fluid part and solid skeleton part. The latter includes, in turn, solid part and, possibly, disconnected fluid part, i.e., fluid islands; therefore, the solid skeleton part is inhomogeneous. The constitutive model is complicated both in the whole medium and in the solid skeleton because of their inhomogeneity, but the formulations are simplified successfully by introducing a new material constant which is defined differently by Cheng and by Thompson and Willis. All the unmeasurable micromechanical material constants are lumped together in this constant. Four levels of assumptions used in poroelasticity are demonstrated, and with the least assumptions, the constitutive model is formulated. The number of independent material constants is discussed, and the procedures in laboratory tests to obtain the constants are suggested.


Author(s):  
Atefe Karimzadeh ◽  
Majid R. Ayatollahi ◽  
Bushroa A. Razak ◽  
Seyed S. R. Koloor ◽  
Mohd Y. Yahya ◽  
...  

A study on the selection of hyperelastic constitutive model for polymeric materials is performed using a hybrid experimental-computational approach. Bis-GMA polymer is used as a case study of hyperelastic material to describe the polymer characteristics by determining its Poisson’s ratio and its valid range of the hyperelastic stress-strain curves. These two parameters are then used to determine the hyperelastic constitutive model by using the hybrid approach. Several uniaxial compression tests along with their finite element simulations are implemented in a systematic way, to identify the polymer behavior under the compressive loading conditions. Nano-indentation experiments are conducted to verify the hyperelastic behavior of the polymer. The experimental and computational evidences confirm that the Poisson’s ratio of Bis-GMA is 0.40 and the appropriate hyperelastic constitutive model for this polymer is of a second order polynomial. It is shown that, the results can be used to determine the true stress-strain curve of hyperelastic materials.


2012 ◽  
Vol 40 (1) ◽  
pp. 42-58 ◽  
Author(s):  
R. R. M. Ozelo ◽  
P. Sollero ◽  
A. L. A. Costa

Abstract REFERENCE: R. R. M. Ozelo, P. Sollero, and A. L. A. Costa, “An Alternative Technique to Evaluate Crack Propagation Path in Hyperelastic Materials,” Tire Science and Technology, TSTCA, Vol. 40, No. 1, January–March 2012, pp. 42–58. ABSTRACT: The analysis of crack propagation in tires aims to provide safety and reliable life prediction. Tire materials are usually nonlinear and present a hyperelastic behavior. Therefore, the use of nonlinear fracture mechanics theory and a hyperelastic material constitutive model are necessary. The material constitutive model used in this work is the Mooney–Rivlin. There are many techniques available to evaluate the crack propagation path in linear elastic materials and estimate the growth direction. However, most of these techniques are not applicable to hyperelastic materials. This paper presents an alternative technique for modeling crack propagation in hyperelastic materials, based in the J-Integral, to evaluate the crack path. The J-Integral is an energy-based parameter and is applicable to nonlinear materials. The technique was applied using abaqus software and compared to experimental tests.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Mathilde Tiennot ◽  
Davide Iannuzzi ◽  
Erma Hermens

AbstractIn this investigation on the mechanical behaviour of paint films, we use a new ferrule-top nanoindentation protocol developed for cultural heritage studies to examine the impact of repeated relative humidity variations on the viscoelastic behaviour of paint films and their mechanical properties in different paint stratigraphies through the changes in their storage and loss moduli. We show that the moisture weathering impact on the micromechanics varies for each of these pigment-oil systems. Data from the nanoindentation protocol provide new insights into the evolution of the viscoelastic properties dsue to the impact of moisture weathering on paint films.


Author(s):  
Fulufhelo Nemavhola

AbstractRegional mechanics of the heart is vital in the development of accurate computational models for the pursuit of relevant therapies. Challenges related to heart dysfunctioning are the most important sources of mortality in the world. For example, myocardial infarction (MI) is the foremost killer in sub-Saharan African countries. Mechanical characterisation plays an important role in achieving accurate material behaviour. Material behaviour and constitutive modelling are essential for accurate development of computational models. The biaxial test data was utilised to generated Fung constitutive model material parameters of specific region of the pig myocardium. Also, Choi-Vito constitutive model material parameters were also determined in various myocardia regions. In most cases previously, the mechanical properties of the heart myocardium were assumed to be homogeneous. Most of the computational models developed have assumed that the all three heart regions exhibit similar mechanical properties. Hence, the main objective of this paper is to determine the mechanical material properties of healthy porcine myocardium in three regions, namely left ventricle (LV), mid-wall/interventricular septum (MDW) and right ventricle (RV). The biomechanical properties of the pig heart RV, LV and MDW were characterised using biaxial testing. The biaxial tests show the pig heart myocardium behaves non-linearly, heterogeneously and anisotropically. In this study, it was shown that RV, LV and MDW may exhibit slightly different mechanical properties. Material parameters of two selected constitutive models here may be helpful in regional tissue mechanics, especially for the understanding of various heart diseases and development of new therapies.


Sign in / Sign up

Export Citation Format

Share Document