Effect of Temperature Dropping during Solution Treatment in Rejuvenation Heat Treatment and its Long-Term Heating Simulation on Microstructures of Nickel Base Alloy, Udimet 520

2017 ◽  
Vol 891 ◽  
pp. 25-32
Author(s):  
Kritsayanee Saelor ◽  
Panyawat Wangyao

Udimet 520 is a low precipitation strengthened nickel-based superalloy, which was designed and developed to be gas turbine blades at elevated temperatures. However, after long-term service under high stresses and temperatures, the microstructure of the turbine blades could be continually degraded. Therefore, the mechanical properties could be worse than the new ones. The rejuvenation heat treatment of degraded turbine blades, which were made of cast Udimet 520, was following by solution treatment at 1,121oC / 4 hours and then double aging processes including primary aging at 843 oC / 24 hours and secondary aging at 760oC / 16 hours, respectively. However, in practical reheat treatment processes, the temperature during solution treatment could be dropped by error or malfunction of high temperature heating furnace because the furnace has to be operated continually at very high temperature for very long time resulting in final reheat treated microstructures in many nickel base superalloys. To simulate this effect, the droppings of temperature during solution treatment are chosen and performed for 3 levels; 840oC, 800oC and 760oC, which could happen in practical working then heated up again immediately to solution temperature level. The maximum number of temperature dropping during the single solution treatment is up to 3 times. Received results show that the effect of temperature dropping during solution treatment has influenced on the final rejuvenated microstructures slightly due to the low precipitation behavior of the alloy. The long term heating at 800oC and 900oC / 1000 hours provided much effect in gamma prime particle coarsening.

2017 ◽  
Vol 891 ◽  
pp. 420-425
Author(s):  
Sureerat Polsilapa ◽  
Aimamorn Promboopha ◽  
Panyawat Wangyao

Cast nickel based superalloy, Grade Inconel 738, is a material for turbine blades. Its rejuvenation heat treatment usually consist of solution treatment condition with temperature range of 1125-1205 oC for 2-6 hours. Then it is following with double aging process including primary aging at 1055oC for 1 hour and secondary aging at 845oC for 24 hours. However, the various selected temperature dropping program were performed during solution treatment to simulate the possible error of heating furnace. The maximum number of temperature dropping during solution treatment is varied from 1-3 times From all obtained results, the various temperature dropping during solution treatment conditions showed extremely the significant effect on the final rejuvenated microstructures and long-term gamma prime stability after heating at temperature of 900oC for 200 hours.


2012 ◽  
Vol 31 (2) ◽  
Author(s):  
Piyapat Wongnawapreechachai ◽  
Weerasak Hormkrajai ◽  
Gobboon Lothongkum ◽  
Panyawat Wangyao

AbstractThe general standard reheat treatment condition to refurbishment long-term serviced turbine blades, which are made of cast nickel based superalloy, GTD-111, is usually following by solution treatment at 1438 K, 1458 K and 1478 K for 10.8 to 14.4 ks, combination with primary aging at 1328 K for 3.6 ks, and secondary aging at 1118 K for 86.4 ks. However, in practical reheat treatment process, the change of temperature during any heat treating could occur accidentally any time. To simulate this effect, the droppings of temperatures during solution treatment were chosen and carried out to temperature level of 1118 K then heating again to the solution temperature levels. The temperature droppings (according to various programs) were performed during solution treatment. From the results, it was found that effect of temperature dropping during solution treatment greatly influenced the final rejuvenated microstructures.


2015 ◽  
Vol 658 ◽  
pp. 14-18
Author(s):  
Tanaporn Rojhirunsakool ◽  
Duangkwan Thongpian ◽  
Nutthita Chuankrerkkul ◽  
Panyawat Wangyao

Nickel-base superalloys have been used as high temperature materials in land-base gas turbine application. When subjected to long term, high temperature service, large crack propagation was observed. Typical refurbishment method of these turbines is carried out by using TIG welding followed by post-weld standard heat treatment. However, new crack initiation is found in the heat-affected zone after TIG welding. Pre-weld heat treatment has been discovered to improves final γ + γ’ microstructure. This study focuses on the effect of pre-weld heat treatment temperature on final γ + γ’ microstructure. Seven different conditions of pre-weld heat treatment temperature were investigated. Scanning electron microscopy studies were carried out after pre-weld and post-weld heat treatments to compare the γ + γ’ microstructure and capture microcracks. The best pre-weld heat treatment temperature produces uniform distribution of finely dispersed γ’ precipitates in the γ matrix without post-weld crack.


2011 ◽  
Vol 462-463 ◽  
pp. 1244-1249 ◽  
Author(s):  
Omar Bapokutty ◽  
Zainuddin Sajuri ◽  
Junaidi Syarif ◽  
A.R. Said

The effect of heat treatment on tensile and creep properties of nickel-base superalloy, Inconel 718 in room and at high temperature was investigated. Solution treatment was applied on the as-received material at 980oC for 1 hour before water quenched followed by double aging treatments at 720oC and 621oC for 8 hours, respectively and then cooled in air. The tensile strength at elevated temperatures of 550oC and 650oC were slightly deteriorated for heat treated and as-received materials. Beside strength, significant difference was observed in the elongation. The elongation of heat treated samples drastically reduced to 4 to 5% only compared to that of the as received materials which exhibited more than 30% elongation. The significant increased in tensile strength is suspected due to the present of γ’, γ” and δ precipitates which pinned the movement of grain boundary and sliding. However, the present of these precipitates caused the material to become harder and brittle. Moreover, the increase in load from 70% to 90% UTS and in temperature significantly accelerated the creep rate.


2019 ◽  
Vol 944 ◽  
pp. 92-98
Author(s):  
Xu Qiao ◽  
Bo Long Li ◽  
Tong Bo Wang ◽  
Zuo Ren Nie

The served harsh environment of advanced aircraft engine puts forward higher requirements for high temperature titanium alloy performance. The optimized heat treatment technology provides effective theoretical basis for improving the microstructure and properties of high temperature titanium alloys. In this paper, we study the influence of different heat treatment systems on microstructure and mechanical properties of high temperature alloy with equiaxed structure, in order to obtain the corresponding relationship between the process and the microstructure performance of the alloy and the optimal heat treatment process. Analysis the effect of solution treatment on the primary α phase quantitatively by optical microscope and Image-Pro-Plus 6.0 software based on the forged high temperature titanium alloy in α+β phase region. Observe the precipitation of α2 phase and silicide by TEM, optimize the aging process according to hardness test. The results show that the content of primary a phase decrease from 63.3% at 920°C to 15.3% at 990°C with the increase of solution temperature. When the temperature rises to 980~990°C, the structure changes from equiaxed structure to α+β duplex microstructure. And change into lamellar structure when the solution temperature raise to 1010°C. The secondary α phase precipitates more fully when the aging temperature increases. And with increasing aging time, the trend of α2 phase growth become more significantly. The optimum heat treatment system obtained in this experimental is 990°C/1h/AC+700°C/5h/AC, and the α phase is about 15.3%. Hence, the excellent microstructure and properties match has been obtained.


2015 ◽  
Vol 658 ◽  
pp. 19-24
Author(s):  
Panyawat Wangyao ◽  
Sureerat Polsilapa ◽  
Surang Singmaneesakulchai ◽  
Aimamorn Promboopha

The objectives of this research are to search for the most appropriate heat treatment condition for rejuvenating microstructure of cast nickel base superalloy, grade IN-738, turbine blades after using to prolong its life time service again. The turbine blades that had been used for long term service under load and high temperatures resulted in small gamma prime particles connecting to each other and thus forming into larger particles. This effect generally reduces creep resistance and increases the failure. In this research, 5 IN-738 superalloy samples were reheat-treated under simulation of 2 working conditions. First, they were heated at 900oC. At every 400 hours from the beginning of heat treatment until time reaching 1600 hours, these samples were collected and examined the microstructures, size and area fraction of gamma prime particles. Another heating program, they received an over thermal exposure heating at 1125oC for 1 hour after long-term heated at 900oC after every 400 hours-heating. Then the results were analyzed from working conditions. It was found that the sample passed solutioning at 1125oC for 4 hours and aging at 845oC for 24 hours with the over thermal exposure showed the most stable phase stability with γ’ phase increasing after long-term simulated working conditions .


Author(s):  
M. Larsen ◽  
R.G. Rowe ◽  
D.W. Skelly

Microlaminate composites consisting of alternating layers of a high temperature intermetallic compound for elevated temperature strength and a ductile refractory metal for toughening may have uses in aircraft engine turbines. Microstructural stability at elevated temperatures is a crucial requirement for these composites. A microlaminate composite consisting of alternating layers of Cr2Nb and Nb(Cr) was produced by vapor phase deposition. The stability of the layers at elevated temperatures was investigated by cross-sectional TEM.The as-deposited composite consists of layers of a Nb(Cr) solid solution with a composition in atomic percent of 91% Nb and 9% Cr. It has a bcc structure with highly elongated grains. Alternating with this Nb(Cr) layer is the Cr2Nb layer. However, this layer has deposited as a fine grain Cr(Nb) solid solution with a metastable bcc structure and a lattice parameter about half way between that of pure Nb and pure Cr. The atomic composition of this layer is 60% Cr and 40% Nb. The interface between the layers in the as-deposited condition appears very flat (figure 1). After a two hour, 1200 °C heat treatment, the metastable Cr(Nb) layer transforms to the Cr2Nb phase with the C15 cubic structure. Grain coarsening occurs in the Nb(Cr) layer and the interface between the layers roughen. The roughening of the interface is a prelude to an instability of the interface at higher heat treatment temperatures with perturbations of the Cr2Nb grains penetrating into the Nb(Cr) layer.


Alloy Digest ◽  
1993 ◽  
Vol 42 (10) ◽  

Abstract ALTEMP HX is an austenitic nickel-base alloy designed for outstanding oxidation and strength at high temperatures. The alloy is solid-solution strengthened. Applications include uses in the aerospace, heat treatment and petrochemical markets. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness and creep. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, and joining. Filing Code: Ni-442. Producer or source: Allegheny Ludlum Corporation.


Alloy Digest ◽  
1972 ◽  
Vol 21 (7) ◽  

Abstract UDIMET 105 is a nickel-base alloy which was developed for service at elevated temperatures. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-175. Producer or source: Special Metals Corporation.


Proceedings ◽  
2021 ◽  
Vol 56 (1) ◽  
pp. 41
Author(s):  
Lida Khajavizadeh ◽  
Anita Lloyd Spetz ◽  
Mike Andersson

In order to investigate the necessary device improvements for high-temperature CO sensing with SiC metal insulator semiconductor field effect transistor (MISFET)-based chemical gas sensors, devices employing, as the gas-sensitive gate contact, a film of co-deposited Pt/Al2O3 instead of the commonly used catalytic metal-based contacts were fabricated and characterized for CO detection at elevated temperatures and different CO and O2 levels. It can be concluded that the sensing mechanism at elevated temperatures correlates with oxygen removal from the sensor surface rather than the surface CO coverage as observed at lower temperatures. The long-term stability performance was also shown to be improved compared to that of previously studied devices.


Sign in / Sign up

Export Citation Format

Share Document