Effect of Temperature Dropping During Reheat Treatments on GTD-111 Microstructure

2012 ◽  
Vol 31 (2) ◽  
Author(s):  
Piyapat Wongnawapreechachai ◽  
Weerasak Hormkrajai ◽  
Gobboon Lothongkum ◽  
Panyawat Wangyao

AbstractThe general standard reheat treatment condition to refurbishment long-term serviced turbine blades, which are made of cast nickel based superalloy, GTD-111, is usually following by solution treatment at 1438 K, 1458 K and 1478 K for 10.8 to 14.4 ks, combination with primary aging at 1328 K for 3.6 ks, and secondary aging at 1118 K for 86.4 ks. However, in practical reheat treatment process, the change of temperature during any heat treating could occur accidentally any time. To simulate this effect, the droppings of temperatures during solution treatment were chosen and carried out to temperature level of 1118 K then heating again to the solution temperature levels. The temperature droppings (according to various programs) were performed during solution treatment. From the results, it was found that effect of temperature dropping during solution treatment greatly influenced the final rejuvenated microstructures.

2017 ◽  
Vol 891 ◽  
pp. 25-32
Author(s):  
Kritsayanee Saelor ◽  
Panyawat Wangyao

Udimet 520 is a low precipitation strengthened nickel-based superalloy, which was designed and developed to be gas turbine blades at elevated temperatures. However, after long-term service under high stresses and temperatures, the microstructure of the turbine blades could be continually degraded. Therefore, the mechanical properties could be worse than the new ones. The rejuvenation heat treatment of degraded turbine blades, which were made of cast Udimet 520, was following by solution treatment at 1,121oC / 4 hours and then double aging processes including primary aging at 843 oC / 24 hours and secondary aging at 760oC / 16 hours, respectively. However, in practical reheat treatment processes, the temperature during solution treatment could be dropped by error or malfunction of high temperature heating furnace because the furnace has to be operated continually at very high temperature for very long time resulting in final reheat treated microstructures in many nickel base superalloys. To simulate this effect, the droppings of temperature during solution treatment are chosen and performed for 3 levels; 840oC, 800oC and 760oC, which could happen in practical working then heated up again immediately to solution temperature level. The maximum number of temperature dropping during the single solution treatment is up to 3 times. Received results show that the effect of temperature dropping during solution treatment has influenced on the final rejuvenated microstructures slightly due to the low precipitation behavior of the alloy. The long term heating at 800oC and 900oC / 1000 hours provided much effect in gamma prime particle coarsening.


2017 ◽  
Vol 891 ◽  
pp. 420-425
Author(s):  
Sureerat Polsilapa ◽  
Aimamorn Promboopha ◽  
Panyawat Wangyao

Cast nickel based superalloy, Grade Inconel 738, is a material for turbine blades. Its rejuvenation heat treatment usually consist of solution treatment condition with temperature range of 1125-1205 oC for 2-6 hours. Then it is following with double aging process including primary aging at 1055oC for 1 hour and secondary aging at 845oC for 24 hours. However, the various selected temperature dropping program were performed during solution treatment to simulate the possible error of heating furnace. The maximum number of temperature dropping during solution treatment is varied from 1-3 times From all obtained results, the various temperature dropping during solution treatment conditions showed extremely the significant effect on the final rejuvenated microstructures and long-term gamma prime stability after heating at temperature of 900oC for 200 hours.


2021 ◽  
Vol 63 (2) ◽  
pp. 105-112
Author(s):  
Chuleeporn Paa-rai ◽  
Gobboon Lothongkum ◽  
Panyawat Wangyao

Abstract IN-738 turbine blade samples, deteriorated after long term service at high temperatures, were solution heat-treated at two temperatures, 1398 K and 1473 K, for 7.2 ks. Subsequently, the samples were cooled down in different atmospheres, in air and in furnace, for the purpose of studying the effects of different cooling media (rates) on the restored microstructures. Following this, the samples were aged at 1118 K for 43.2 ks and 86.4 ks in order to determine the characteristic of re-precipitated gamma prime particles. A scanning electron microscope (SEM) and ImageJ analysis software were used. The results show that the cooling in air provided gamma prime particles re-precipitating in spherical shape while the cooling in a furnace resulted in coarse gamma prime particles re-precipitating in irregular shape. The samples solutionized at 1398 K for 7.2 ks cooled down in air and then aging at 1118 K provided bimodal microstructure, while the sample solutionized at 1473 K for 7.2 ks, followed by air cooling and aging at 1118 K generated unimodal γ’ precipitation in spherical shape. Cooling in a furnace provides coarse γ’ recipitated particles in more irregular shape for the both solutionizing temperatures studied here. Cooling in a furnace provides coarse γ’ precipitated particles in more irregular shape for the both solutionizing temperatures studied here.


2013 ◽  
Vol 747-748 ◽  
pp. 690-696 ◽  
Author(s):  
Su Gui Tian ◽  
Y.C. Xue ◽  
Z. Zeng

By means of solution treatment at various temperatures, creep properties measurement and microstructure observation, the effects of heat treatment on composition segregation and creep properties were investigated. Results show that the various segregation extents of the elements are displayed in the alloys solution treated at different temperatures, and the segregation extent of the elements is improved with the solution temperature elevated, which may obvious improve the creep resistance of the alloy. And no rafted structure of the γ phase is detected in the alloy during creep at medium temperature. The deformation features of the alloy during creep at medium temperature are that the slipping of dislocations is activated in the γ matrix channels, and dislocations shearing into the γ phase may be decomposed to form the configuration of partials + stacking faults, which may hinder the cross-slipping of the dislocations to improve the creep resistance of the alloy.


2013 ◽  
Vol 747-748 ◽  
pp. 919-925 ◽  
Author(s):  
Guo Qiang Shang ◽  
Xin Nan Wang ◽  
Yue Fei ◽  
Jun Li ◽  
Zhi Shou Zhu ◽  
...  

The effect of common solution treatment, two-step solution treatment and aging, solution treatment and aging (STA) on the microstructure and mechanical properties of a new low cost titanium alloy used in aviation field were investigated by optical microscope (OM), scanning electron microscopy (SEM) and tensile test. The results show that a typical equiaxed structure can be obtained by common solution treatment leading to a good combination of strength and plasticity. Besides, solution heat treating in the β region and subsequently ageing at a low temperature results in a significant increase in mechanical strength and a little decrease in plasticity. When the solution temperature is at α+β two-phase region (895), the low cost titanium alloy acquires the best combination of strength and ductility.


2021 ◽  
Vol 63 (8) ◽  
pp. 691-698
Author(s):  
Vara Vacharatanon ◽  
Napat Kiatwisarnkij ◽  
Gobboon Lothongkum ◽  
Nuthaporn Nuttayasakul ◽  
Jiaqian Qin ◽  
...  

Abstract This research work studied and evaluated the effects of reheat treatment conditions, which consisted of solution treatment at a temperature of 1448 K for 14.4 ks, followed by air cooling and precipitate aging at a temperature of 1118 K for 86.4 ks, on the microstructural rejuvenation or refurbishment of various modified alloys based on the cast nickel base superalloy, GTD-111 with aluminum, nickel and/or cobalt additions after long term heating at temperatures of 1173 K and 1273 K for 1440 ks. From the results obtained, it was found that the reheat treatment conditions applied are more suitable for microstructures after long term heating at a temperature of 1173 K. However, such reheat treatment conditions could not fully return reheat treated microstructures to microstructures similar to those of previous research work. It seems that the selected solutioning temperatures and/or times were not sufficient to completely dissolve all coarse gamma prime particles after long term heating for all samples with alloying additions. Typical size and area fractions of the gamma prime particles of the reheat treated microstructures are very similar to those of the original alloyed ones but with lower values, especially those related to the size of the gamma prime particles.


2013 ◽  
Vol 58 (1) ◽  
pp. 95-98 ◽  
Author(s):  
M. Zielinska ◽  
J. Sieniawski

Superalloy René 77 is very wide used for turbine blades, turbine disks of aircraft engines which work up to 1050°C. These elements are generally produced by the investment casting method. Turbine blades produced by conventional precision casting methods have coarse and inhomogeneous grain structure. Such a material often does not fulfil basic requirements, which concern mechanical properties for the stuff used in aeronautical engineering. The incorporation of controlled grain size improved mechanical properties. This control of grain size in the casting operation was accomplished by the control of processing parameters such as casting temperature, mould preheating temperature, and the use of grain nucleates in the face of the mould. For nickel and cobalt based superalloys, it was found that cobalt aluminate (CoAl2O4) has the best nucleating effect. The objective of this work was to determine the influence of the inoculant’s content (cobalt aluminate) in the surface layer of the ceramic mould on the microstructure and mechanical properties at high temperature of nickel based superalloy René 77. For this purpose, the ceramic moulds were made with different concentration of cobalt aluminate in the primary slurry was from 0 to 10% mass. in zirconium flour. Stepped and cylindrical samples were casted for microstructure and mechanical examinations. The average grain size of the matrix ( phase), was determined on the stepped samples. The influence of surface modification on the grain size of up to section thickness was considered. The microstructure investigations with the use of light microscopy and scanning electron microscopy (SEM) enable to examine the influence of the surface modification on the morphology of ’ phase and carbides precipitations. Verification of the influence of CoAl2O4 on the mechanical properties of castings were investigated on the basis of results obtained form creep tests.


Alloy Digest ◽  
2004 ◽  
Vol 53 (12) ◽  

Abstract Udimet L-605 is a high-temperature aerospace alloy with excellent strength and oxidation resistance. It is used in applications such as gas turbine blades and combustion area parts. This datasheet provides information on composition, physical properties, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, and joining. Filing Code: CO-109. Producer or source: Special Metals Corporation.


Sign in / Sign up

Export Citation Format

Share Document