Effect of α2 Precipitation on Creep and Tensile Properties of Ga-Added Near-α Titanium Alloys

2018 ◽  
Vol 941 ◽  
pp. 747-752 ◽  
Author(s):  
Tomonori Kitashima ◽  
Masuo Hagiwara ◽  
Tsutomu Ito ◽  
Masao Hayakawa ◽  
Satoshi Iwasaki

The effect of α2precipitation on the creep and tensile properties was investigated for bimodal and lamellar microstructures in two Ga-added near-α Ti alloys with Al equivalences of 10.6 and 11.5. Fine α2phase formed in the α phase of both alloys. The volume fraction of the α2phase for the Al equivalences of 10.6 and 11.5 is equivalent to 57.6 % and 73.3 %, respectively, in the binary Ti-Al system at 600 °C. Creep tests were carried out under a constant stress of 310 MPa at 600 °C and tensile tests were performed at room temperature. Lamellar microstructure showed lower minimum creep strain rates than bimodal microstructure for both alloys. The increase in Al equivalence increased creep life by a factor of 1.6 and decreased the minimum creep strain rate from 6.51 × 10-8s-1to 3.99 × 10-8s-1in bimodal microstructure. In addition, the increase in Al equivalence decreased room temperature tensile elongation although both alloys contained a similar volume fraction of equiaxed α in a bimodal microstructure.

DYNA ◽  
2016 ◽  
Vol 83 (195) ◽  
pp. 77-83 ◽  
Author(s):  
María José Quintana Hernández ◽  
José Ovidio García ◽  
Roberto González Ojeda ◽  
José Ignacio Verdeja

The use of Cu and Ti in Zn alloys improves mechanical properties as solid solution and dispersoid particles (grain refiners) may harden the material and reduce creep deformation. This is one of the main design problems for parts made with Zn alloys, even at room temperature. In this work the mechanical behavior of a Zn-Cu-Ti low alloy is presented using tensile tests at different strain rates, as well as creep tests at different loads to obtain the value of the strain rate coefficient m in samples parallel and perpendicular to the rolling direction of the Zn strip. The microstructure of the alloy in its raw state, as well as heat treated at 250°C, is also analyzed, as the banded structure produced by rolling influences the strengthening mechanisms that can be achieved through the treatment parameters.


Author(s):  
Rafael Luis Menezes Freitas ◽  
Celio Costa ◽  
Erica Gervasoni Chaves ◽  
Sylvia Teixeira

This study presents the mechanical properties evaluation of two commercial grades of PVDFs, which were extruded with the same parameters but with different cooling temperatures. After processing, stress relaxation with 7% strain was imposed and tensile properties were measured. The cooling temperature after extrusion were 4°C, 23°C and 80°C. Then, the PVDFs were submitted to stress relaxation at 23°C and 7% strain. The as processed and after relaxation samples were characterized by FTIR, XRD, DSC and tensile tests at 23°C. The stress relaxation at 23 °C resulted in no change in volume fraction of crystallinity for PVDF A and B. The XRD and FTIR, for both PVDFs, showed that the crystalline phases were the same, for all cooling conditions and did not change after the stress relaxation. The tensile properties at room temperature showed that the yield stress was a little affect by the cooling temperature, while Young’s Modulus and yield strain were insensible to the cooling temperature. After the stress relaxation, these three tensile properties were slightly affected for both grades.


1994 ◽  
Vol 364 ◽  
Author(s):  
C. L. Ma ◽  
T. Takasugi ◽  
S. Hanada

AbstractThe effect of additions of chromium, manganese and iron on environmental embrittlement of the Ni3(Si,Ti) alloy is investigated by room temperature tensile tests in various kind of atmospheres (vacuum, air, distilled water and H2 gas) and at various strain rates. The observed tensile elongation and the associated fracture mode are very much dependent on atmospheres and strain rates. It is shown that additions of these transition elements to the Ni3(Si,Ti) alloy are effective in reducing the embrittlement particularly in air and distilled water, and their magnitude of reducing the embrittlement decreased in the order, chromium, manganese and iron. However, additions of these transition elements are only slightly effective in reducing the embrittlement in H2 gas. The beneficial effect of additions of these transition elements on environmental embrittlement of the Ni3(Si,Ti) alloy is discussed, based on some possible mechanisms.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 906
Author(s):  
Dong Han ◽  
Yongqing Zhao ◽  
Weidong Zeng

The present study focuses on the effect of 1% Zr addition on the microstructure, tensile properties and superplasticity of a forged SP700 alloy. The results demonstrated that Zr has a significant effect on inhibiting the microstructural segregation and increasing the volume fraction of β-phase in the forged SP700 alloy. After annealing at 820 °C for 1 h and aging at 500 °C for 6 h, the SP700 alloy with 1% Zr showed a completely globular and fine microstructure. The yield strength, ultimate tensile strength and tensile elongation of the alloy with optimized microstructure were 1185 MPa, 1296 MPa and 10%, respectively. The superplastic deformation was performed at 750 °C with an elongation of 1248%. The improvement of tensile properties and superplasticity of the forged SP700 alloy by Zr addition was mainly attributed to the uniform and fine globular microstructures.


2010 ◽  
Vol 654-656 ◽  
pp. 819-822
Author(s):  
Genki Kikuchi ◽  
Hiroshi Izui ◽  
Yuya Takahashi ◽  
Shota Fujino

In this study, we focused on the sintering performance of Ti-4.5Al-3V-2Mo-2Fe (SP-700) and mechanical properties of SP-700 reinforced with titanium boride (TiB/SP-700) fabricated by spark plasma sintering (SPS). TiB whiskers formed in titanium by a solid-state reaction of titanium and TiB2 particles were analyzed with scanning electron microscopy and X-ray diffraction. The TiB/SP-700 was sintered at temperatures of 1073, 1173, and 1273 K and a pressure of 70 MPa for 10, 30, and 50 min. The volume fraction of TiB ranged from 1.7 vol.% to 19.9 vol.%. Tensile tests of TiB/SP-700 were conducted at room temperature, and the effect of TiB volume fraction on the tensile properties was investigated.


2010 ◽  
Vol 97-101 ◽  
pp. 153-157
Author(s):  
Tao Wang ◽  
Hong Zhen Guo ◽  
Jian Hua Zhang ◽  
Ze Kun Yao

The microstructures and room temperature and 600°C tensile properties of Ti-5.8Al-4.0Sn-4.0Zr-0.7Nb -0.4Si-1.5Ta alloy after isothermal forging have been studied. The forging temperature range was from 850°C to 1075°C, and the constant strain rate of 8×10-3/S-1 was adopted. With the increase of forging temperature, the volume fraction of primary α phase decreased and the lamellar α phase became thicker when the temperatures were in range of 850°C -1040°C; The grain size became uneven and the α phase had different forms when the forging temperature was 1040°C and 1075°C respectively; The tensile strength was not sensitive to the temperature and the most difference was within 20MPa. Tensile strength and yield strength attained to the maximum when temperature was 1020°C; the ductility decreased with the increase of forging temperature, and this trend became more obvious if forging temperature was above the β-transus temperature.


1944 ◽  
Vol 11 (4) ◽  
pp. A211-A218
Author(s):  
M. J. Manjoine

Abstract This paper describes the influence of rate of strain and temperature on the yield stresses of mild steel. Tensile tests are reported for room temperature, 200, 400, and 600 C, at rates of strain which vary from 10−8 to 103 per sec. The results of these tensile tests are plotted to show more clearly the effects of strain-aging on the yield stresses and ultimate stress. The comparison of the yield stress at various strain rates permits an analysis of the influence of strain. The conditions necessary for discontinuous yielding are described and compared with test experiences.


2007 ◽  
Vol 546-549 ◽  
pp. 257-260 ◽  
Author(s):  
Zhen Yan Zhang ◽  
Li Ming Peng ◽  
Xiao Qin Zeng ◽  
Lin Du ◽  
Lan Ma ◽  
...  

Effects of extrusion on mechanical properties and damping capacity of Mg-1.8wt.%Cu -0.5wt.%Mn (MCM1805) alloy have been investigated. Tensile tests and dynamic mechanical analyzer were respectively used to measure tensile properties and damping capacity at room temperature of as-cast and as-extruded MCM1805 alloy. The microstructure was studied using optical microscope, X-ray diffraction and scanning electron microscope with an energy dispersive X-ray spectrometer. Granato-Lücke model was used to explain the influences of extrusion on damping capacity of MCM1805 alloy. The results showed that extrusion dramatically decreases the grain size but has little influence on phase composition and solute atoms concentration of MCM1805 alloy, and the grain refinement was the dominant reason for the obvious increase of tensile properties and decrease of internal friction of MCM1805 alloy.


2013 ◽  
Vol 209 ◽  
pp. 6-9 ◽  
Author(s):  
Rajendra Doiphode ◽  
S.V.S. Narayana Murty ◽  
Nityanand Prabhu ◽  
Bhagwati Prasad Kashyap

Mg-3Al-1Zn (AZ31) alloy was caliber rolled at 250, 300, 350, 400 and 450 °C. The effects of caliber rolling temperature on the microstructure and tensile properties were investigated. The room temperature tensile tests were carried out to failure at a strain rate of 1 x 10-4s-1. The nature of stress-strain curves obtained was found to vary with the temperature employed in caliber rolling. The yield strength and tensile strength followed a sinusoidal behaviour with increasing caliber rolling temperature but no such trend was noted in ductility. These variations in tensile properties were explained by the varying grain sizes obtained as a function of caliber rolling temperature.


1991 ◽  
Vol 113 (4) ◽  
pp. 475-484 ◽  
Author(s):  
K. P. Jen ◽  
J. N. Majerus

This paper presents the evaluation of the stress-strain behavior, as a function of strain-rate, for three tin-lead solders at room temperature. This behavior is critically needed for reliability analysis of printed circuit boards (PCB) since handbooks list minimal mechanical properties for the eutectic solder used in PCBs. Furthermore, most handbook data are for stable eutectic microstructure whereas PCB solder has a metastable microstructure. All three materials were purchased as “eutectics.” However, chemical analysis, volume fraction determination, and microhardness tests show some major variations between the three materials. Two of the materials have a eutectic composition, and one does not. The true stress-strain equations of one eutectic and the one noneutectic material are determined from compressive tests at engineering strain-rates between 0.0002/s and 0.2/s. The second eutectic material is evaluated using tensile tests with strain-rates between 0.00017/s and 0.042/s. The materials appear to exhibit linear elastic behavior only at extremely small strains, i.e., less than 0.0005. However, this “elastic” behavior showed considerable variation, and depended upon the strain rate. In both tension and compression the eutectic alloy exhibits nonlinear plastic behavior, i.e., strain-softening followed by strain-hardening, which depends upon the strain rate. A quadratic equation σy = σy(ε˚/ε˚0) + A(ε˚/ε˚0)ε + B(ε˚/ε˚0)ε2 fit to the data gives correlation coefficients R2 > 0.91. The coefficients σy(ε˚/ε˚0), A(ε˚/ε˚0), B(ε˚/ε˚0) are fitted functions of the normalized engineering strain rate ε˚/ε˚0. Replicated experiments are used at each strain-rate so that a measure of the statistical variation could be estimated. Measures of error associated with the regression analysis are also obtained so that an estimate of the total error in the stress-strain relations can be made.


Sign in / Sign up

Export Citation Format

Share Document