Facile Fabrication of N-Methyl-D-Glucamine Grafted HDPE Particle as Adsorbent for Boron Removal from Aqueous Solution

2019 ◽  
Vol 953 ◽  
pp. 198-205
Author(s):  
Ji Fu Du ◽  
Zhen Dong ◽  
Xin Yang ◽  
Long Zhao

Glycidyl methacrylate (GMA) was grafted onto the surface of HDPE particles by radiation grafting and emulsion graft copolymerization. And subsequent ring-opening reaction of expoxy groups in poly-GMA graft chains with N-methylglucamine (NMG) was conducted to synthesis the boron adsorbent. The synthesis condition (radiation dose and NMG concentration) was optimized and characterized by IR and SEM. Adsorption behaviors of the boron adsorbent for boron removal presented that adsorption kinetics was well described by pseudo-second-order kinetic mode. The adsorption isothermal was well fitted with both Langmuir and Freundlich isotherm models. The adsorption capacity for boron reached 15.63 mg/g at optimal pH 8. Dynamic experiment revealed that boron could be efficiently adsorbed by the boron adsorbent and fully desorbed using 13 BV of 1 mol/L HCl.

2017 ◽  
Vol 12 (2) ◽  
pp. 305-313 ◽  
Author(s):  
N. Rajamohan ◽  
M. Rajasimman

This experimental research was an investigation into removal of mercury by using a strong acid cation resin, 001 × 7. Parametric experiments were conducted to determine the optimum pH, resin dosage, agitation speed and the effect of change in concentration in the range of 50–200 mg/L. High resin dosages favoured better removal efficiency but resulted in lower uptakes. Equilibrium experiments were performed and fitted to Langmuir and Freundlich isotherm models. Langmuir model suited well to this study confirming the homogeneity of the resin surface. The Langmuir constants were estimated as qmax = 110.619 mg/g and KL = 0.070 L/g at 308 K. Kinetic experiments were modeled using Pseudo second order model and higher values of R2 (>0.97) were obtained. The Pseudo second order kinetic constants, namely, equilibrium uptake (qe) and rate constant (k2), were evaluated as 59.17 mg/g and 40.2 × 10−4 g mg−1 min−1 at an initial mercury concentration of 100 mg/L and temperature of 308 K.


BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 6781-6790
Author(s):  
Moammar Elbidi ◽  
Agab Hewas ◽  
Rajab Asar ◽  
Mohamad Amran Mohd Salleh

Removal of phenol from wastewater using local biochar (BC) was investigated, while using activated carbon (AC) as a reference material. The main parameters affecting the sorption process were initial concentration, contact time, pH, and temperature. Statistical analysis of the results showed that the maximum removal percent when using AC and BC were 95% and 55%, respectively. Experimental data showed that the removal of phenol has fast kinetics and reached equilibrium within 5 minutes. The Langmuir and Freundlich isotherm models were applied to fit the adsorption experimental data. Pseudo-first order and pseudo-second order kinetic models were employed.


2012 ◽  
Vol 27 ◽  
pp. 107-114
Author(s):  
Jagjit Kour ◽  
P. L. Homagai ◽  
M. R. Pokherel ◽  
K. N. Ghimire

The industrial discharge of heavy metals into waters' course is one of the major pollution problems affecting water quality. Therefore, they must be removed prior to their discharge into waste streams. An efficient and low-cost bioadsorbent has been investigated from Desmostachya bipinnata (Kush) by charring with concentrated sulphuric acid and functionalized with dimethylamine.It was characterised by SEM, FTIR and elemental analysis. The effect of pH, initial concentration and contact time of the metal solution was monitered by batch method. The maximum adsorption capacities were determined for Cd and Zn at their optimum pH 6. The equilibrium data were analysed using Langmuir and Freundlich isotherm models. Langmuir isotherm model fitted well and the rate of adsorption followed the pseudo second order kinetic equation.DOI: http://dx.doi.org/10.3126/jncs.v27i1.6669 J. Nepal Chem. Soc., Vol. 27, 2011 107-114  


Author(s):  
Hadj Daoud Bouras ◽  
Ahmed RédaYeddou ◽  
Noureddine Bouras ◽  
Abdelmalek Chergui ◽  
Lidia Favier ◽  
...  

Aspergillus parasiticus (A. parasiticus) CBS 100926T was used as a biosorbent for the removal of Methylene Blue (MB), Congo Red (CR), Sudan Black (SB), Malachite Green Oxalate (MGO), Basic Fuchsin (BF) and Phenol Red (PR) from aqueous solutions. The batch biosorption studies were carried out as a function of dye concentration and contact time. The biosorption process followed the pseudo-first-order and the pseudo-second-order kinetic models and the Freundlich and Langmuir isotherm models. The resulting biosorbent was characterized by Scanning Electron Microscopy (SEM), X-Ray Diffractometer and Fourier Transformer Infrared Spectroscopy (FTIR) techniques. The results of the present investigation suggest that A. parasiticus can be used as an environmentally benign and low cost biomaterial for the removal of basic and acid dyes from aqueous solution. HIGHLIGHTS Micro-fungi Aspergillus parasiticus CBS100926T was employed as a new biosorbent for the biosorption of six dyes. The maximum dye capacity was found to be 131.58 mg/g. Adsorption processes can reach equilibrium within 120 min. Adsorption processes follow the pseudo-second-order rate equation. The results of equilibrium sorption were described through Freundlich isotherm.


2018 ◽  
Vol 16 (1) ◽  
pp. 36 ◽  
Author(s):  
Idha Yulia Ikhsani ◽  
Sri Juari Santosa ◽  
Bambang Rusdiarso

Adsorption of disperse dyes from wastewater onto Ni-Zn LHS (layered hydroxide salts) and Mg-Al LDH (layered double hydroxides) has been compared in this study. Effects of initial pH solution, contact time and initial dye concentration were investigated. The ability of the adsorbent to be reused was also studied. The results showed that acidic condition was favorable for the adsorption of each dyes onto both adsorbent. The adsorption kinetics was studied using pseudo-first-order, pseudo-second-order and Santosa’s kinetics models. The experimental data fits well with the pseudo-second order kinetic model. The equilibrium adsorption data were analyzed using Langmuir and Freundlich isotherm models. The results showed that adsorption of navy blue onto both adsorbent followed Freundlich isotherm adsorption, while yellow F3G followed Langmuir isotherm adsorption. In the application for the adsorption the wastewater containing dyes, Ni-Zn LHS has a better adsorption capacity of 52.33 mg/g than that of Mg-Al LDH that 30.54 mg/g. Calcination of the adsorbent which has already been used increased the adsorption capacity of Mg-Al LDH to 84.75 mg/g, but decreased the adsorption capacity of the Ni-Zn LHS to 42.65 mg/g.


Author(s):  
Fateme Poorsharbaf Ghavi ◽  
Fereshteh Raouf ◽  
Ahmad Dadvand Koohi

Abstract The elimination of diclofenac traces from aqueous environments is important. In this research, the effect of alkaline (NaOH) pretreatment on clinoptilolite before its modification with a surfactant (HDTMA) for diclofenac adsorption under the speculation of the sole presence of diclofenac in the aqueous solution is investigated. The results are compared through isotherm, kinetic, and thermodynamic studies and supplemented by FTIR, SEM, BET, and the zeta potential analyses. The contact time was investigated in a 0–180-min range. The pH effect was studied in a range of 5–10 because of diclofenac dissociation below pH = 5. The effect of the temperature on diclofenac adsorption was also considered by establishing the experiments at 25, 35, and 45 °C. For HDTMA-modified clinoptilolite, Temkin, and for NaOH-HDTMA-modified clinoptilolite, Dubinin–Radushkevich, and Freundlich isotherm models and in both cases, the pseudo-second-order kinetic model fitted the experimental data best. All the enthalpy and the entropy changes were negative, suggesting exothermic adsorption with a decrease in the degree of freedom of diclofenac anions after the adsorption. Furthermore, diclofenac physisorption was confirmed through isotherm and kinetic studies.


2016 ◽  
Vol 7 (3) ◽  
pp. 307-318 ◽  
Author(s):  
F. Z. Mahjoubi ◽  
A. Khalidi ◽  
O. Cherkaoui ◽  
R. Elmoubarki ◽  
M. Abdennouri ◽  
...  

This work involved the preparation, characterization and dyes removal ability of Zn-Al, Mg-Al and Ni-Al layered double hydroxide (LDH) minerals intercalated by chloride ions. The materials were synthetized by the co-precipitation method. X-ray diffraction, Fourier transform infrared, thermogravimetric-differential thermal analysis and transmission electron microscopy characterization exhibited a typical hydrotalcite structure for all the samples. Adsorption experiments for methyl orange were performed in terms of solution pH, contact time and initial dye concentration. Experimental results indicate that the capacity of dye uptake augmented rapidly within the first 60 min and then stayed practically the same regardless of the concentration. Maximum adsorption occurred with acidic pH medium. Kinetic data were studied using pseudo-first-order and pseudo-second-order kinetic models. Suitable correlation was acquired with the pseudo-second-order kinetic model. Equilibrium data were fitted to Langmuir and Freundlich isotherm models. The maximum Langmuir monolayer adsorption capacities were 2,758, 1,622 and 800 mg/g, respectively, for Zn-Al-Cl, Mg-Al-Cl and Ni-Al-Cl. The materials were later examined for the elimination of color and chemical oxygen demand (COD) from a real textile effluent wastewater. The results indicated that the suitable conditions for color and COD removal were acquired at pH of 5. The maximum COD removal efficiency from the effluent was noted as 92.84% for Zn-Al-Cl LDH.


Author(s):  
Hynda Yazid ◽  
Zahra Sadaoui ◽  
Rachida Maachi

The preparation of biological activated dates’ pedicels (ADP) adsorbents and its biosorption behaviour of cadmium (II) was the topic of this study. The raw (RDP) and activated (ADP) dates’ pedicels were characterized by SEM, XRF, FTIR and surface area analysis. SEM analysis revealed a heterogeneous structure for ADP and a cellular aspect different from that of RDP, due to the deposit of the bacterial film which has been constituted during the biological treatment of the material. The XRF results show the presence of potassium, calcium in RPD, and sodium in APD which could favour the retention of heavy metals in aqueous solutions by ions exchange. The FT-IR spectra showed that there are different functional groups in adsorbents, which are able to react with metal ions in aqueous solution. Biological pretreatment was carried out in nitrate enriched solution; allowing to enhance the development of denitrifying micro-organisms already existing on the organic support without the need for biomass inoculation. Biological pretreatment allowed the appearance of a bacterial film at the surface of the date pedicel particles, which improved their biosorption capacity. Indeed, the biosorption yields of cadmium (II) ions obtained at equilibrium (60 min) were 70.4 and 57.4% for ADP and RDP, respectively. The experimental data were analyzed by the Langmuir and Freundlich isotherm models and the model constants were evaluated. The maximum biosorption capacity as calculated using the Langmuir isotherm model was 10.75 mg g-1 which is greater than that of commercial and granular activated carbon. The kinetic data obtained at different initial cadmium concentrations and different temperatures were analyzed using pseudo-second-order and intra-particle diffusion models. The biosorption kinetics followed a pseudo-second-order kinetic model. The biosorption of cadmium ion was endothermic and spontaneous. Elution efficiencies with different concentrations of CaCl2, KCl and NaCl were evaluated. The desorption studies showed the reversibility of biosorption and CaCl2 was the most efficient desorbent for elution and desorption of cadmium from the biosorbant.


2018 ◽  
Vol 20 (2) ◽  
pp. 381-388 ◽  

The removal of Lead (II) from aqueous solutions using Fagopyrum esculentum Moench (Buckwheat) and Bambusa vulgaris (common bamboo) as adsorbents was investigated. The effects of various experimental parameters such as initial concentration, contact time and pH have been studied using batch adsorption technique. All the Adsorption isotherm models fitted well with the adsorption data. However, Freundlich isotherm displayed a better fitting model than the other two isotherm models due to high correlation coefficient (R2). This indicates the applicability of multilayer coverage of the Pb (II) on the surface of adsorbent. The adsorption kinetics was studied using four simplified models and it was found to follow the pseudo-second-order kinetic model which confirmed the applicability of the model. The adsorption mechanism was found to be chemisorption and the rate-limiting step was mainly surface adsorption.


2019 ◽  
Vol 20 (2) ◽  
pp. 23-32
Author(s):  
Marah Waleed Khalid ◽  
Sami D. Salman

Due to the broad range uses of chromium for industrial purposes, besides its carcinogenic effect, an efficient, cost effective removal method should be obtained. In this study, cow bones as a cheap raw material were utilized to produce active carbon (CBAC) by physiochemical activation, which was characterized using: SEM to investigate surface morphology and BET to estimate the specific surface area. The best surface area of CBAC was 595.9 m2/gm which was prepared at 600 ᵒC activation temperature and impregnation ratio of 1:1.5. CBAC was used in aqueous chromium ions adsorption. The investigated factors and their ranges are: initial concentration (10-50 mg/L), adsorption time (30-300 min), temperature (20-50 ᵒC) and solution pH (2-11). Isotherm of adsorption and its kinetics were studied. The adsorption process was modeled statistically and was represented by an empirical model. Equilibrium data were fitted to the Langmuir and Freundlich isotherm models and the data best represented by Freundlich isotherm. Pseudo- first order and pseudo- second order kinetic equations were utilized to study adsorption kinetics, where chromium adsorption on CBAC fitted pseudo- second order fitted the data more adequately. The best removal efficiency was found to be 94.32%.


Sign in / Sign up

Export Citation Format

Share Document