A Comparative Study of Wave Excitation in Plates Using Piezoelectric Transducers Operating at Different Modes

2019 ◽  
Vol 969 ◽  
pp. 128-133 ◽  
Author(s):  
Mohammed Aslam ◽  
Praveen Nagarajan ◽  
Mini Remanan

Structural health monitoring (SHM) and damage detection techniques have recently gained attention in various fields of engineering for preventing catastrophic failures. Among different SHM techniques, Lamb wave propagation methods are widely used as these waves can propagate large distance from a single source. Piezoelectric (PZT) transducers are used here as actuators and sensors to generate and receive wave signals. Most of the studies conducted on wave propagation in plates are by use of conventional d31 mode piezoelectric transducer. However, so far very few studies have been done using other types of PZT transducers. The primary objective of this paper is to determine and study the wave responses in a thin plate using different types of PZT transducers. The results indicate that the d31 and d33 type transducers generate Lamb waves, whereas d24 and d15 type transducers generate shear horizontal waves in two orthogonal directions. The study indicates that each of the transducers has its own directional property. The present study will be helpful for the application of Lamb waves and shear horizontal waves in plate structures

2017 ◽  
Vol 754 ◽  
pp. 387-390 ◽  
Author(s):  
Nan Yue ◽  
Zahra Sharif Khodaei ◽  
Ferri M.H. Aliabadi

Detectability of damage using Lamb waves depends on many factors such as size and severity of damage, attenuation of the wave and distance to the transducers. This paper presents a detectability model for pitch-catch sensors configuration for structural health monitoring (SHM) applications. The proposed model considers the physical properties of lamb wave propagation and is independent of damage detection algorithm, which provides a generic solution for probability of detection. The applicability of the model in different environmental and operational conditions is also discussed.


1990 ◽  
Vol 57 (4) ◽  
pp. 923-929 ◽  
Author(s):  
G. R. Liu ◽  
J. Tani ◽  
K. Watanabe ◽  
T. Ohyoshi

The wave propagation in arbitrary anisotropic laminates is investigated on the basis of an exact theory. The dispersion relations of Lamb waves are determined for graphite/epoxy symmetric angle-ply laminates and hybrid composite ones which consist of carbon/epoxy and glass/epoxy layers. The dispersion and anisotropy of phase velocities for fundamental modes are discussed in detail. The energy distributions in the thickness direction of laminates are calculated for each kind of Lamb wave. A hybrid composite laminate is found to have better capability in absorbing impact energy by analyzing the strain energy distribution during the wave propagation. The results of the strain energy distribution are useful in determining the arrangement and the fiber orientation of the layers of hybrid composite laminates.


2018 ◽  
Vol 25 (6) ◽  
pp. 1227-1232 ◽  
Author(s):  
Sergey V. Kuznetsov

Propagation of harmonic Lamb waves in plates made of functionally graded materials with transverse inhomogeneity is analyzed by applying Cauchy six-dimensional formalism previously developed for the study of Lamb wave propagation in homogeneous or stratified anisotropic plates. For anisotropic plates with arbitrary transverse inhomogeneity a closed form implicit solution for the dispersion equation is derived and analyzed.


2013 ◽  
Vol 588 ◽  
pp. 140-148 ◽  
Author(s):  
Rafal Radecki ◽  
Wieslaw Jerzy Staszewski ◽  
Tadeusz Uhl

Lamb waves are the most widely used guided ultrasonic waves for structural damage detection. One of the major problems associate with Lamb wave propagation is the effect of temperature on wave propagation parameters. It is important that these parameters are more sensitive to damage than to varying temperature. The paper demonstrates how amplitude and arrival time of Lamb waves are affected by temperature. The analysis is performed for the experimental data gathered from Lamb wave propagation in a damaged aluminium plate. A simple clustering algorithm is used to distinguish between "undamaged" and "damaged" conditions in the presence of changing temperature.


2009 ◽  
Vol 413-414 ◽  
pp. 87-93 ◽  
Author(s):  
Tomasz Wandowski ◽  
Pawel Malinowski ◽  
Wiesław M. Ostachowicz

In this paper algorithm for damage localisation in thin panels made of aluminium alloy has been proposed. Mentioned algorithm uses Lamb wave propagation methods and geometrical approach for damage localisation. Elastic waves are generated and received using piezoelectric transducers. Excited elastic waves propagate and reflect from panel boundary and discontinuities existing in the panel. Wave reflection can be registered through the piezoelectric transducers and used in signal processing algorithm. Processing algorithm consists of two parts: signal filtering and extraction of damage location. The first part is used in order to remove noise from received signals. Second part allows to extract arrival time of waves reflected from discontinuity, very often called Time Of Flight (TOF). Localisation algorithm uses pairs of transducers from a concentrated transducers configuration. Using signals from pair of transducers two times of reflection can be extracted from received signals. Because coordinates of transducers are well known ellipse can be constructed based on extracted times of waves reflections. Damage lies one ellipse but it is not known exactly where. Therefore one ellipse is not enough to localise a discontinuity. In order of proper damage localisation more ellipses must be used. In this purpose signals received by larger number of transducers pairs are used in damage localisation algorithm. Points of ellipses intersections allow to indicate localisation of damage. Described signal processing algorithm has been coded in the MATLAB® environment. In this work experimental results has been presented.


Author(s):  
J. Dana ◽  
Y. H. Park ◽  
C. Gonzales

Abstract In order to improve the safety, reliability, and life of diverse structures, the development of effective methodologies for structural health monitoring is critical. Among damage detection techniques, guided ultrasonic Lamb waves are particularly suitable for damage detection applications for plate-like and shell-like structures, such as aircraft wing-box structures, heat exchanger tubing, stiffened panels, and nuclear steam generator tubing, due to their sensitivity to damage. Computational models can play a critical role to study wave propagation for monitoring structural health and develop a technique to detect structural damage. Due to complexity of guided wave behavior, efficient and accurate computation tools are essential to study the mechanisms that account for coupling, dispersion, and interaction with damage. In this study, a numerical technique is presented for guided waves propagation in metallic structure by employing co-simulation using ABAQUS Standard module and ABAQUS Explicit module simultaneously to simulate transient wave propagation from an PZT actuator into a metallic plate. The present co-simulation analysis couples multiphysics (piezoelectric) analysis with transient dynamics (wave propagation) analysis. A numerical test is conducted using a PZT actuator for exciting planar Lamb waves and a sensor for acquiring wave signals. The signals achieved from defected and pristine models by FEA are then compared to identify and detect damage in the structure.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2570 ◽  
Author(s):  
Beata Zima ◽  
Rafał Kędra

The article presents the results of the numerical investigation of Lamb wave propagation in concrete plates while taking into account the complex concrete mesostructure. Several concrete models with randomly distributed aggregates were generated with the use of the Monte Carlo method. The influence of aggregate ratio and particle size on dispersion curves representing Lamb wave modes was analyzed. The results obtained for heterogeneous concrete models were compared with theoretical results for homogeneous concrete characterized by the averaged macroscopic material parameters. The analysis indicated that not only do the averaged material parameters influence the dispersion solution, but also the amount and size of aggregate particles. The study shows that Lamb waves propagate with different velocities in homogeneous and heterogeneous models and the difference increases with aggregate ratio and particle size, which is a particularly important observation for wave-based diagnostic methods devoted to concrete structures.


Author(s):  
Jacob Brown ◽  
Whitney Reynolds ◽  
Derek Doyle ◽  
Andrei Zagrai

The use of elastic wave based Structural Health Monitoring has shown its usefulness in both characterizing and diagnosing composite structures. Techniques using elastic wave SHM are being developed to allow for improved efficiency and assurance in all stages of space structure development and deployment. These techniques utilize precise understanding of wave propagation characteristics to extract meaningful information regarding the health and validity of a component, assembly, or structure. However, many of these techniques focus on the diagnostic of traditional, isotropic materials, and questions remain as to the effect of the orthotropic properties of resin matrix composite material on the propagation of elastic waves. As the demands and expectations placed upon composite structures continue to expand in the space community, these questions must be addressed to allow the development of elastic wave based SHM techniques that will enable advancements in areas such as automated build validation and qualification, and in-situ characterization and evaluation of increasingly complex space structures. This study attempts to aid this development by examines the effect of cross ply, off-axis fiber orientation on the propagation characteristics of lamb waves. This is achieved by observing the result of symmetric and anti-symmetric wave propagation across materials in cases containing both off-axis and axially-aligned elements. In both cases the surface plies of the test specimen are axially aligned with the wave propagation direction. Using these results, the relative effect of core ply orientation on lamb wave propagation, and lamb wave sensitivity to bulk properties, or alternatively, the dominance of surface properties on propagation characteristics, can be seen, and this information can be used to aid in future research and application of lamb waves for interrogation of advanced, high-strain composite space structures. It was found that the core orientation caused significant variation in the S0 wave velocity, while yielding little influence on the A0 wave velocity.


2016 ◽  
Vol 713 ◽  
pp. 127-130
Author(s):  
George Lampeas ◽  
Konstantinos Fotopoulos

Monitoring of structural integrity of a component is very important, especially for the damage sensitive laminated composite structures. Among the Structural Health Monitoring (SHM) techniques, the Acousto-Ultrasonic (AU) technology is very promising. However, the accurate simulation of Lamb wave propagation is a very demanding task, in terms of computational cost. In the present study, in the frame of Finite Element method, the stacked-shell methodology is proposed for the simulation of Lamb wave propagation in composite laminated panels. The results of the stacked-shell approach are initially evaluated with respect to experimental results; the method is subsequently applied to undamaged and damaged composite laminated panels, in order to assess its efficiency and accuracy in the simulation of Lamb wave-based damage detection techniques.


2011 ◽  
Vol 105-107 ◽  
pp. 621-625
Author(s):  
Wen Zhong Qu ◽  
D.J. Inman

Among structural health monitoring (SHM) techniques, Lamb waves is frequently used as diagnostic tools to detect damage in plate-like structures. Temperature variation can cause significant changes in guided-wave propagation and transduction for SHM. In this paper, controlled experiments examine changes in Lamb wave propagation and transduction using PZT-5A piezoelectric wafers under quasi-statically varying temperature (from 5°C to 60°C). The baseline selection method and baseline signal stretch method are used to compensate the temperature influence on Lamb wave propagation. The results of the experiments demonstrate the effectiveness of the temperature compensation approach and the simulated damage on the plate can be detected effectively under elevated temperatures environment.


Sign in / Sign up

Export Citation Format

Share Document