Microstructural and Corrosion Studies by Immersion in 3.5% NaCl Solution on Aged Mg-9Al-1Zn-XCa Alloy

2019 ◽  
Vol 969 ◽  
pp. 93-97
Author(s):  
S. Manivannan ◽  
B. Narenthiran ◽  
A. Sivanantham ◽  
S.P. Kumaresh Babu

The experimatal alloys were aged at different temperatures of 180°C, 200°C, 220°C, and 240º C with calcium addition levels of (X=0.5, 1, 1.5, 2%) on Mg-6Al-1Zn-XCa alloy were investigated in 3.5% NaCl solution. All the experimatal alloys were immersed in 3.5% NaCl solutions and the resulted surface were analyzed to study the corrosion behaviour and its surface topography by optical microscopy (OM), scanning electron microscopy (SEM), energy dispersed spectroscopy (EDS) and X-ray diffraction (XRD) techniques. The result shows that corrosion attack occurred predominantly on ß phase and α phase exhibit relatively minor corrosion. In addition to that the increased aging temperature coarsens the intermetallic as well as α- Mg grains, which shows adverse effect to corrosion resistances and the best result were obtained at composition of 0.5wt.% Ca aged at 200°C.

2011 ◽  
Vol 2011 ◽  
pp. 1-6
Author(s):  
C. N. Panagopoulos ◽  
A. G. Tsopani

The corrosion behaviour of Zn-10Al-1.5Cu alloy in NaCl solution was examined. The used NaCl solution concentrations were 1M, 0.3M, and 0.003M for a constant temperature values of 7°C or 25°C or 45°C. The corrosion behaviour of this alloy was investigated under potentiodynamic corrosion conditions. The surface of the corroded alloy specimens was studied with the aid of scanning electron microscopy and X-ray diffraction techniques. It was observed that the increase of NaCl concentration in the corrosion solution for a constant value of temperature led to lower corrosion resistance of the alloy. For a constant value of solution concentration, the increase of solution temperature also led to the decrease of corrosion resistance of the same alloy.


1998 ◽  
Vol 13 (9) ◽  
pp. 2588-2596 ◽  
Author(s):  
K. H. Ryu ◽  
J-M. Yang

The low temperature pressureless sintering of a nanosized Si3N4 powder with doped sintering additives was investigated. The microstructural evolution during sintering at different temperatures was analyzed using x-ray diffraction and scanning electron microscopy. The effect of using nanosized Si3N4 powder as a catalyst to accelerate the α→β–Si3N4 transformation of a commercial Si3N4 powder with larger particle sizes was also investigated. Finally, two stage sintering was used to study the feasibility of controlling the microstructure and the mechanical properties of the nanosized silicon nitride.


2012 ◽  
Vol 48 (2) ◽  
pp. 259-264 ◽  
Author(s):  
E. Güler ◽  
M. Güler

Deformation induced martensite properties were examined according to existing martensite morphology, crystallography and formation temperatures for different prior austenite homogenization conditions in Fe-30%Ni-5%Cu alloy. Scanning electron microscope (SEM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) techniques were employed to investigation. Scanning electron microscope observations showed elongated deformation induced martensite morphology in the austenite phase of alloy. As well, after deformation martensite start temperatures (Ms) were determined as -101?C and -105?C from DSC measurements for different homogenization conditions. In addition, X-ray diffraction analysis revealed the face centred cubic (fcc) of austenite phases and body centred cubic (bcc) deformation induced martensite phases for all studied samples.


2015 ◽  
Vol 1120-1121 ◽  
pp. 572-575
Author(s):  
Hong Wei Liu ◽  
Feng Wang ◽  
Qiang Zhang ◽  
Xi Wu Li ◽  
Zhi Hui Li ◽  
...  

An innovative spray deposition technique has been applied to produce in situ TiB2/Zn-30Al-1Cu composites. The microstructures of the spray-deposited composite were studied using optical microscopy, scanning electron microscopy, and X-ray diffraction. Both theoretical and experimental results have shown that the TiB2particulates are formed in the microstructure. It was found that the TiB2particles were distributed in Zn-30Al-1Cu matrix uniformly, and the TiB2particles are about 2 μm in size. Moreover, the presence of the TiB2particles was led to increasing of α’ phase with less 2 μm size in the composites which have a tendency to decompose to α+η structure.


2014 ◽  
Vol 802 ◽  
pp. 457-461 ◽  
Author(s):  
José Hélio Duvaizem ◽  
N.M.F. Mendes ◽  
J.C.S. Casini ◽  
A.H. Bressiani ◽  
H. Takiishi

Ti-13Nb-13Zr alloy produced via powder metallurgy was submitted to heat treatment under various conditions and the effects on microstructure and elastic modulus were investigated. Heat treatment was performed using temperatures above and below α/β transus combined with different cooling rates – furnace cooling and water quenching. Microstructure and phases were analyzed employing scanning electron microscopy and X-ray diffraction. Elastic Modulus was determined using a dynamic mechanical analyzer (DMA). The results indicated that α phase precipitation and elastic modulus values increased after heat treatment performed using temperature below α/β transus. However, when it was performed above α/β transus and using higher cooling rate, a decrease in elastic modulus was observed despite higher α phase precipitation, indicating that the microstructural modifications observed via SEM, due to the presence of martensitic α phase, influenced on elastic modulus values.


2004 ◽  
Vol 824 ◽  
Author(s):  
A. B. Kolyadin ◽  
V. Ya. Mishin ◽  
K. Ya. Mishin ◽  
A. S. Aloy ◽  
T. I. Koltsova

AbstractThe oxidation of UO2–type spent nuclear fuel (SNF) in gaseousmedia was studied at different temperatures and oxygen contents using gravimetric and powder X-ray diffraction (XRD) techniques. The aim of the study was to determine the mechanism(s) of thermal-oxidation alteration of SNF during long-term dry storage. The samples used in the experiments were chips of RBMK-1000 fuel rods.Oxidation of UO2with a mean burn-up of 10.7 and 19.73 MW d/kg in humid air was observed at a temperature as low as 150°C. At 200°C nearly all of the UO2was transformed into U3O8 between 3500-4000 hours. In a humid nitrogen environment containing of 0.05-1.3 vol. % oxygen at 300°C, the UO2 completely transformed to U3O8 between 2500-3000 hours. Oxidation of UO2in samples with small amounts of jacket damage (e.g., <0.04 MM2)ll progresses more slowly and after â3000 hours the oxygen-to-uranium ratio was 2.56.Stabilization of the oxidation process was not observed in the fuel samples upto an O/U ratio of 2.4, which may be attributed to the smallburn-up of the fuel under investigation.


NANO ◽  
2015 ◽  
Vol 10 (05) ◽  
pp. 1550064 ◽  
Author(s):  
Yupeng Gao ◽  
Hao Chen ◽  
Aiguo Zhou ◽  
Zhengyang Li ◽  
Fanfan Liu ◽  
...  

Hierarchical TiO 2/carbon nanocomposites were synthesized by oxidation of two-dimensional (2D) Ti 3 C 2 nanosheets at different temperatures. Crystal structures and morphologies of the obtained samples were characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and Raman spectroscopy. The results show that 2D Ti 3 C 2 nanosheets are partially oxidized to form a novel hierarchical nanostructure which is composed of carbon nanosheets and TiO 2 nanoparticles. With the calcination temperature increasing, the crystal structure of TiO 2 nanoparticles changes from anatase to rutile and the hierarchical structure was gradually destroyed. The photodegradation results reveal that the samples obtained at 200°C and 285°C show much better photocatalytic properties than P25. And meanwhile the photocatalytic property will become worse with the increase in calcinations temperature.


2008 ◽  
Vol 55-57 ◽  
pp. 873-876 ◽  
Author(s):  
N. Chaiyo ◽  
R. Muanghlua ◽  
A. Ruangphanit ◽  
Wanwilai C. Vittayakorn ◽  
Naratip Vittayakorn

A corundum-type structure of cobalt niobate (Co4Nb2O9) has been synthesized by a solid-state reaction. The formation of the Co4Nb2O9 phase in the calcined powders was investigated as a function of calcination conditions by differential thermal analysis (DTA) and X-ray diffraction (XRD) techniques. Morphology and particle size have been determined by scanning electron microscopy (SEM). It was found that the minor phases of unreacted Co3O4 tend to form together with the columbite CoNb2O6 phase at a low calcination temperature and short dwell time. It seems that the single-phase of Co4Nb2O9 in a corundum phase can be obtained successfully at the calcination conditions of 900°C for 60 min, with heating/cooling rates of 20°C /min.


2014 ◽  
Vol 1004-1005 ◽  
pp. 113-118
Author(s):  
Hong Xia Liu ◽  
Jin Liang ◽  
Jue Zhang ◽  
Xiao Lian Zhang

Corrosion behaviour of AZ91DSm1.0 with different preparation methods(vacuum melting and common melting) is investigated. X-ray diffraction(XRD), optical microscopy(OM), scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS), corrosion weightless experiment and the potentiodynamic polarization curve are applied to characterize the corrosion behaviour. Results show that vacuum melting alloy possess higher corrosion resistance than common melting alloy. This is attributed to the rod-shaped Al3Sm which was formed in common melting alloy will have certain fragmentation effect on matrix that can lead to defects.


2019 ◽  
Vol 27 (2) ◽  
pp. 228-237 ◽  
Author(s):  
Rashed T. Rasheed ◽  
Sariya D. Al-Algawi ◽  
Rosul M. N.

Manganese dioxide (MnO2) nanopowder has been synthesized by hydrothermal method. MnO2 was annealed at different temperatures (250, 400, 550, 700˚C). The crystal structure and surface morphology of these nanostructures were characterized by X-ray diffraction (XRD), Atomic Force Microscope (AFM) and Scanning Electron Microscopy (SEM). The catalase mimic activity (catalytic activity) of MnO2 against hydrogen peroxide (H2O2) was studied by using the new method and found that 400˚C is the best annealing temperature.


Sign in / Sign up

Export Citation Format

Share Document