Pilot Scale Continuous Adsorption of Soluble Oil Wastewater by Modified Sugarcane Bagasse with Al2(SO4)3 as Adsorbent

2020 ◽  
Vol 990 ◽  
pp. 177-182
Author(s):  
Toungrat Janpattanapong ◽  
Kowit Piyamongkala ◽  
Von Louie R. Manguiam

The modified sugarcane bagasse with aluminum sulfate was used as an adsorbent for the removal of soluble oil wastewater. The effects of the flow rate, 5 and 10 cm3/min and the number of columns used were thoroughly investigated in a continuous up-flow adsorption process. At the flow rate of 5 cm3/min respected to the 2nd column, the highest breakthrough point to adsorb soluble oil wastewater was at 6 hrs. The results confirmed that the modified sugarcane bagasse can be used as an adsorbent for fixed-bed continuous adsorption of soluble oil wastewater from steel pipe factory. The breakthrough curves were predicted by Yoon-Nelson model. This model may be fitted to predict the overall breakthrough curve using the experimental data gathered. In addition, the significant uptake of the soluble oil wastewater was demonstrated by the changes in the heat of combustion of the modified sugarcane bagasse before and after the adsorption process.

2016 ◽  
Vol 74 (10) ◽  
pp. 2297-2304 ◽  
Author(s):  
Dalia I. Sánchez-Machado ◽  
Jaime López-Cervantes ◽  
Ma. A. Correa-Murrieta ◽  
Reyna G. Sánchez-Duarte

A fixed bed column packed with chitosan-sodium tripolyphosphate (CTPP) beads was used to remove aqueous Fe (III) ions. The adsorption of Fe (III) ions on CTPP beads was found to be dependent on operating conditions, such as the flow rate, adsorbent bed length, and feed concentration. The experimental data were assessed with Thomas, Adams-Bohart and Yoon-Nelson models to predict the breakthrough curves using linear regression. The breakthrough curves were better fitted with the Thomas and Yoon-Nelson models when the flow rate was varied and the feed concentration and the bed height of the column were fixed. Therefore, chemical adsorption may be the limiting step that controls the continuous adsorption process. The Adams-Bohart model presented a good fit to the experimental data, showing that external mass transfer was controlling the adsorption process in the initial part of the breakthrough curves. The parameters obtained from the continuous adsorption assays may be used as a basis for designing columns packed with CTPP beads for the removal of Fe (III) ions.


2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Josilene Aparecida Vieira Rodrigues ◽  
Luide Rodrigo Martins ◽  
Laís Milagres Furtado ◽  
Amália Luísa Pedrosa Xavier ◽  
Francine Tatiane Rezende de Almeida ◽  
...  

Batch and continuous adsorption of Co2+ and Cu2+ from aqueous solutions by oxidized sugarcane bagasse (SBox) and oxidized cellulose (Cox) were investigated. The oxidation reaction of sugarcane bagasse and cellulose was made with a mixture of H3PO4‒NaNO2 to obtain SBox and Cox, with the introduction of high number of carboxylic acid functions, 4.5 and 4.8 mmol/g, respectively. The adsorption kinetics of Co2+ and Cu2+ on SBox and Cox were modeled using two models (pseudo-first-order and pseudo-second-order) and the rate-limiting step controlling the adsorption was evaluated by Boyd and intraparticle diffusion models. The Sips and Langmuir models better fitted the isotherms with values of maximum adsorption capacity Qmax of 0.68 and 0.37 mmol/g for Co2+ and 1.20 and 0.57 mmol/g for Cu2+ adsorption on Cox and SBox, respectively. The reuse of both spent adsorbents was evaluated. Adsorption of Cu2+ and Co2+ on SBox in continuous was evaluated using a 22 factorial design with spatial time and initial metal concentration as independent variables and Qmax and effective use of the bed as responses. The breakthrough curves were very well described by the Bohart–Adams original model and the Qmax values for Co2+ and Cu2+ were 0.22 and 0.55 mmol/g. SBox confirmed to be a promising biomaterial for application on a large scale.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
R. Lakshmipathy ◽  
G. L. Balaji ◽  
Iván Leandro Rodríguez Rico

This investigation suggests the implementation of ZSM-5 activated carbon composite as a prolific adsorbent for the continuous elimination of Pb2+ ions from water. Continuous adsorption experiments were performed by varying three parameters such as process flow rate (2-6 mL min-1), bed height (2-6 cm), and initial concentration (250–750 mg L-1). The highest loading capacity of the fixed-bed 213.3 mg L-1 was achieved with optimal values of 2 mL min-1 of flow rate, bed height of 6 cm, and initial concentration of 750 mg L-1, respectively. The breakthrough curves and saturation points were found to appear quickly for increasing flow rates and initial concentration and vice versa for bed depth. The lower flow rates with higher bed depths have exhibited optimal performances of the fixed-bed column. The mechanism of adsorption of Pb2+ ions was found to be ion exchange with Na+ ions from ZMS-5 and pore adsorption onto activated carbon. The breakthrough curves were verified with three well-known mathematical models such as the Adams-Bohart, Thomas, and Yoon-Nelson models. The later models showed the best fit to the column data over the Adams-Bohart model that can be utilized to understand the binding of Pb2+ ions onto the composite. Regeneration of ZSM-5/activated carbon was achieved successfully with 0.1 M HCl within 60 min of contact time. The outcomes conclude that ZSM-5 activated carbon composite is a prolific material for the continuous removal of water loaded with Pb2+ ions.


2018 ◽  
Vol 20 (3) ◽  
pp. 610-619

<p>The objective of this study is to examine the ability of a compost material for removing {Cu}^{2+} from aqueous solutions with different parameters using continuous fixed-bed column. Compost was characterized by using Fourier transform infrared spectroscopy which revealed that the metal binding is mainly contributed to the ionic interaction of the metal cations with the carboxyl groups in the hemic substances. Scanning electron microscope images were utilized for morphological analysis of the adsorbent and has revealed that the changes in compost composition could be related to the mechanism of metal binding. Energy dispersive X-ray spectroscopy was used before and after the metal had loaded and gives a good evidence on compost adsorption of {Cu}^{2+} and the metals have its involvement in the interaction in the adsorption process. The influence of the initial {Cu}^{2+}concentration, flow rate, bed heights of the column, and ion exchange have been studied in this research. The adsorption kinetic models have revealed that the behaviour of the {Cu}^{2+\ }adsorption is dependent on rate of concentration, flow rate, and bed heights.</p>


2021 ◽  
Vol 235 (3) ◽  
pp. 281-294
Author(s):  
Abida Kausar ◽  
Haq Nawaz Bhatti ◽  
Munawar Iqbal

Abstract Sugarcane bagasse waste biomass (SBWB) efficacy for the adsorption of Zr(IV) was investigated in batch and column modes. The process variables i.e. pH 1–4 (A), adsorbent dosage 0.0–0.3 g (B), and Zr(IV) ions initial concentration 25–200 mg/L (C) were studied. The experiments were run under central composite design (CCD) and data was analysed by response surface methodology (RSM) methodology. The factor A, B, C, AB interaction and square factor A2, C2 affected the Zr(IV) ions adsorption onto SBWB. The quadratic model fitted well to the adsorption data with high R2 values. The effect of bed height, flow rate and Zr(IV) ions initial concentration was also studied for column mode adsorption and efficiency was evaluated by breakthrough curves as well as Bed Depth Service and Thomas models. Bed height and Zr(IV) ions initial concentration enhanced the adsorption of capacity of Zr(IV) ions, whereas flow rate reduced the column efficiency.


2018 ◽  
Vol 8 (11) ◽  
pp. 2221 ◽  
Author(s):  
Olga Długosz ◽  
Marcin Banach

Vermiculite has been used for the removal of Cu 2 + and Ag + from aqueous solutions in a fixed-bed column system. The effects of initial silver and copper ion concentrations, flow rate, and bed height of the adsorbent in a fixed-bed column system were investigated. Statistical analysis confirmed that breakthrough curves depended on all three factors. The highest inlet metal cation concentration (5000 mg/dm3), the lowest bed height (3 cm) and the lowest flow rate (2 and 3 cm3/min for Ag + and Cu 2 + , respectively) were optimal for the adsorption process. The maximum total percentage of metal ions removed was 60.4% and 68.7% for Ag+ and Cu2+, respectively. Adsorption data were fitted with four fixed-bed adsorption models, namely Clark, Bohart–Adams, Yoon–Nelson and Thomas models, to predict breakthrough curves and to determine the characteristic column parameters. The adsorbent was characterized by SEM, FTIR, EDS and BET techniques. The results showed that vermiculite could be applied as a cost-effective sorbent for the removal of Cu 2 + and Ag + from wastewater in a continuous process.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Ghita El Mouhri ◽  
Mohammed Merzouki ◽  
Hajar Belhassan ◽  
Youssef Miyah ◽  
Halima Amakdouf ◽  
...  

This study deals with the removal of residual pollutants from tanning wastewater by continuous adsorption mechanism, using local sand as a low-cost adsorbent. The possibility of pretreating a complex tannery effluent heavily loaded with a natural material such as sand is significant. The characterization of the adsorbent before and after continuous adsorption was performed by X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. Column studies were also carried out to evaluate the performance of the adsorbent and the efficiency of column adsorption. The adsorption kinetic rate seems to be strongly influenced by certain parameters such as the particle size of the material used, the withdrawal rate of the influent and the height of the adsorbent bed, and optimized parameters were found to be 63 μm, 15 ml·min−1, and 7 cm, respectively, and the color removal has achieved maximum values which vary between 95 and 100%. The results suggest that sand can be used as an economical adsorbent for the removal of color from the wastewater of the tanning industries.


2011 ◽  
Vol 287-290 ◽  
pp. 1620-1625
Author(s):  
Yan Wu ◽  
Zai Fang Deng ◽  
Yang Tao ◽  
Xue Gang Luo

Fixed-bed column studies for the removal of Ag(Ⅰ) and Cr(Ⅲ) from individual aqueous solutions using puffed rice husk were investigated in this work. The experiments were conducted to study the effect of important column parameters such as bed height, feed flow rate and feed initial concentration of solution. It was found that increasing bed depth yielded longer service time while increase in influent concentration and flow rate resulted in faster breakthrough. Bed Depth Service Time (BDST) model was applied to analyze the experimental data and the model parameters were evaluated. Good agreement of the experimental breakthrough curves with the model predictions was observed.


2019 ◽  
Vol 25 (4) ◽  
pp. 383-393
Author(s):  
Abel Adeyi ◽  
Siti Jamil ◽  
Luqman Abdullah ◽  
Thomas Choong ◽  
Mohammad Abdullah ◽  
...  

Thiourea-modified poly(acrylonitrile-co-acrylic acid) (TU-poly(AN-co-AA)) polymeric adsorbent was synthesized and characterized with Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscope (SEM) and Zetasizer. Adsorptive removal of cationic malachite green (MG) dye from aqueous solution in a continuous TU-poly(AN-coAA) packed-bed column was studied. The influences of solution pH (2-9), inlet MG concentration (25-80 mg/L), bed depth (4-8 cm) and linear flow rate (1.5-5.0 mL/min) were investigated via assessment of the column breakthrough curves. Low pH and short bed depth, high MG concentration and flow rate led to early breakthrough of MG. According to correlation coefficients (R2) and sum of the squares of the errors (SSE) values, Thomas and Yoon-Nelson dynamic models are more suitable to describe the column experimental data compared to the Bohart-Adams model. TU-poly(AN-co-AA) exhibited effective separation of MG from the liquid phase and displayed high adsorption capacities after five regeneration cycles.


Author(s):  
Meena Chakraborty ◽  
Madhurima Pandey ◽  
Piyushkant Pandey

Abstract A continuous adsorption study in a fixed-bed column was carried out by using Tinospora cordifolia as an adsorbent for the removal of fluoride from aqueous solution. The effect of flow rate, influent fluoride concentration and bed depth on the adsorption characteristics of adsorbent was investigated at pH 7. The dependencies of breakthrough curves on these parameters were confirmed from the data obtained. Modeling of data was done. Thomas, Yoon–Nelson and Adams–Bohart models were applied to experimental data to predict the breakthrough curves. These kinetic models were helpful to determine the characteristic parameters of column designing for defluoridation on a large scale. Thomas and Yoon-Nelson models were found to be more suitable for the description of the breakthrough curve than the Adams–Bohart model in the present study. It was concluded that the Tinospora cordifolia-packed column can be used for effective defluoridation of water.


Sign in / Sign up

Export Citation Format

Share Document