scholarly journals Removal of Pb2+ Ions by ZSM-5/AC Composite in a Fixed-Bed Bench Scale System

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
R. Lakshmipathy ◽  
G. L. Balaji ◽  
Iván Leandro Rodríguez Rico

This investigation suggests the implementation of ZSM-5 activated carbon composite as a prolific adsorbent for the continuous elimination of Pb2+ ions from water. Continuous adsorption experiments were performed by varying three parameters such as process flow rate (2-6 mL min-1), bed height (2-6 cm), and initial concentration (250–750 mg L-1). The highest loading capacity of the fixed-bed 213.3 mg L-1 was achieved with optimal values of 2 mL min-1 of flow rate, bed height of 6 cm, and initial concentration of 750 mg L-1, respectively. The breakthrough curves and saturation points were found to appear quickly for increasing flow rates and initial concentration and vice versa for bed depth. The lower flow rates with higher bed depths have exhibited optimal performances of the fixed-bed column. The mechanism of adsorption of Pb2+ ions was found to be ion exchange with Na+ ions from ZMS-5 and pore adsorption onto activated carbon. The breakthrough curves were verified with three well-known mathematical models such as the Adams-Bohart, Thomas, and Yoon-Nelson models. The later models showed the best fit to the column data over the Adams-Bohart model that can be utilized to understand the binding of Pb2+ ions onto the composite. Regeneration of ZSM-5/activated carbon was achieved successfully with 0.1 M HCl within 60 min of contact time. The outcomes conclude that ZSM-5 activated carbon composite is a prolific material for the continuous removal of water loaded with Pb2+ ions.

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Wan-Chi Tsai ◽  
Mark Daniel G. de Luna ◽  
Hanna Lee P. Bermillo-Arriesgado ◽  
Cybelle M. Futalan ◽  
James I. Colades ◽  
...  

Fixed-bed adsorption studies using chitosan-coated bentonite (CCB) as adsorbent media were investigated for the simultaneous adsorption of Pb(II), Cu(II), and Ni(II) from a multimetal system. The effects of operational parameters such as bed height, flow rate, and initial concentration on the length of mass transfer zone, breakthrough time, exhaustion time, and adsorption capacity at breakthrough were evaluated. With increasing bed height and decreasing flow rate and initial concentration, the breakthrough and exhaustion time were observed to favorably increase. Moreover, the adsorption capacity at breakthrough was observed to increase with decreasing initial concentration and flow rate and increasing bed height. The maximum adsorption capacity at breakthrough of 13.49 mg/g for Pb(II), 12.14 mg/g for Cu(II), and 10.29 mg/g for Ni(II) was attained at an initial influent concentration of 200 mg/L, bed height of 2.0 cm, and flow rate of 0.4 mL/min. Adsorption data were fitted with Adams-Bohart, Thomas, and Yoon-Nelson models. Experimental breakthrough curves were observed to be in good agreement (R2>0.85andE%<50%) with the predicted curves generated by the kinetic models. This study demonstrates the effectiveness of CCB in the removal of Pb(II), Cu(II), and Ni(II) from a ternary metal solution.


2021 ◽  
Vol 235 (3) ◽  
pp. 281-294
Author(s):  
Abida Kausar ◽  
Haq Nawaz Bhatti ◽  
Munawar Iqbal

Abstract Sugarcane bagasse waste biomass (SBWB) efficacy for the adsorption of Zr(IV) was investigated in batch and column modes. The process variables i.e. pH 1–4 (A), adsorbent dosage 0.0–0.3 g (B), and Zr(IV) ions initial concentration 25–200 mg/L (C) were studied. The experiments were run under central composite design (CCD) and data was analysed by response surface methodology (RSM) methodology. The factor A, B, C, AB interaction and square factor A2, C2 affected the Zr(IV) ions adsorption onto SBWB. The quadratic model fitted well to the adsorption data with high R2 values. The effect of bed height, flow rate and Zr(IV) ions initial concentration was also studied for column mode adsorption and efficiency was evaluated by breakthrough curves as well as Bed Depth Service and Thomas models. Bed height and Zr(IV) ions initial concentration enhanced the adsorption of capacity of Zr(IV) ions, whereas flow rate reduced the column efficiency.


2018 ◽  
Vol 8 (11) ◽  
pp. 2221 ◽  
Author(s):  
Olga Długosz ◽  
Marcin Banach

Vermiculite has been used for the removal of Cu 2 + and Ag + from aqueous solutions in a fixed-bed column system. The effects of initial silver and copper ion concentrations, flow rate, and bed height of the adsorbent in a fixed-bed column system were investigated. Statistical analysis confirmed that breakthrough curves depended on all three factors. The highest inlet metal cation concentration (5000 mg/dm3), the lowest bed height (3 cm) and the lowest flow rate (2 and 3 cm3/min for Ag + and Cu 2 + , respectively) were optimal for the adsorption process. The maximum total percentage of metal ions removed was 60.4% and 68.7% for Ag+ and Cu2+, respectively. Adsorption data were fitted with four fixed-bed adsorption models, namely Clark, Bohart–Adams, Yoon–Nelson and Thomas models, to predict breakthrough curves and to determine the characteristic column parameters. The adsorbent was characterized by SEM, FTIR, EDS and BET techniques. The results showed that vermiculite could be applied as a cost-effective sorbent for the removal of Cu 2 + and Ag + from wastewater in a continuous process.


2020 ◽  
Vol 990 ◽  
pp. 177-182
Author(s):  
Toungrat Janpattanapong ◽  
Kowit Piyamongkala ◽  
Von Louie R. Manguiam

The modified sugarcane bagasse with aluminum sulfate was used as an adsorbent for the removal of soluble oil wastewater. The effects of the flow rate, 5 and 10 cm3/min and the number of columns used were thoroughly investigated in a continuous up-flow adsorption process. At the flow rate of 5 cm3/min respected to the 2nd column, the highest breakthrough point to adsorb soluble oil wastewater was at 6 hrs. The results confirmed that the modified sugarcane bagasse can be used as an adsorbent for fixed-bed continuous adsorption of soluble oil wastewater from steel pipe factory. The breakthrough curves were predicted by Yoon-Nelson model. This model may be fitted to predict the overall breakthrough curve using the experimental data gathered. In addition, the significant uptake of the soluble oil wastewater was demonstrated by the changes in the heat of combustion of the modified sugarcane bagasse before and after the adsorption process.


2017 ◽  
Vol 18 (2) ◽  
pp. 94-104
Author(s):  
Rozaimi Abu Samah

The main objective of this work was to design and model fixed bed adsorption column for the adsorption of vanillin from aqueous solution. Three parameters were evaluated for identifying the performance of vanillin adsorption in fixed-bed mode, which were bed height, vanillin initial concentration, and feed flow rate. The maximum adsorption capacity was increased more than threefold to 314.96 mg vanillin/g resin when the bed height was increased from 5 cm to 15 cm. Bohart-Adams model and Belter equation were used for designing fixed-bed column and predicting the performance of the adsorption process. A high value of determination coefficient (R2) of 0.9672 was obtained for the modelling of vanillin adsorption onto resin H103.


2013 ◽  
Vol 68 (10) ◽  
pp. 2294-2300 ◽  
Author(s):  
Jianfei Liu ◽  
Jiajun Chen ◽  
Lin Jiang ◽  
Cheng Chen

The adsorption behavior of phenanthrene (PHE) in Triton X-100 (TX100) solutions with fixed activated carbon (AC) bed was studied to recover the surfactant. The effect of various parameters like bed depths, flow rates, influent TX100 concentration, and influent PHE concentration were investigated. The breakthrough time of both TX100 and PHE increased with the increase of bed height and decrease of flow rate and influent concentration. In the case of fixed length, a lower flow rate, higher concentration of TX100, and lower concentration of PHE will benefit the longer effective surfactant recovery time. The adsorption data were integrated into bed depth service time models. The height of exchange zone of TX100 should be much shorter than that of PHE, which provides conditions to separate the hydrophobic organic compound from surfactant solutions with AC in a fixed bed. It is likely that the adsorption process is controlled by hydrophobic interaction.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1912
Author(s):  
Huijie Zhu ◽  
Qiang Huang ◽  
Mingyan Shi ◽  
Shuai Fu ◽  
Xiuji Zhang ◽  
...  

The effectiveness of nanoscale zero-valent iron(nZVI) immobilized on activated carbon (nZVI/AC) in removing antimonite (Sb(III)) from simulated contaminated water was investigated with and without a magnetic fix-bed column reactor. The experiments were all conducted in fixed-bed columns. A weak magnetic field (WMF) was proposed to increase the exclusion of paramagnetic Sb(III) ions by nZVI/AC. The Sb(III) adsorption to the nZVI and AC surfaces, as well as the transformation of Sb(III) to Sb(V) by them, were both increased by using a WMF in nZVI/AC. The increased sequestration of Sb(III) by nZVI/AC in the presence of WMF was followed by faster nZVI corrosion and dissolution. Experiments were conducted as a function of the pH of the feed solution (pH 5.0–9.0), liquid flow rate (5–15 mL·min−1), starting Sb(III) concentration (0.5–1.5 mg·L−1), bed height nZVI/AC (10–40 cm), and starting Sb(III) concentration (0.5–1.5 mg·L−1). By analyzing the breakthrough curves generated by different flow rates, different pH values, different inlet Sb(III) concentrations, and different bed heights, the adsorbed amounts, equilibrium nZVI uptakes, and total Sb(III) removal percentage were calculated in relation to effluent volumes. At pH 5.0, the longest nZVI breakthrough time and maximal Sb(III) adsorption were achieved. The findings revealed that the column performed effectively at the lowest flow rate. With increasing bed height, column bed capacity and exhaustion time increased as well. Increasing the Sb(III) initial concentration from 0.5 to 1.5 mg·L−1 resulted in the rise of adsorption bed capacity from 3.45 to 6.33 mg·g−1.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Nan Li ◽  
Jing Ren ◽  
Lin Zhao ◽  
Zhong-liang Wang

Removal of phosphate from solution using nanosized FeOOH-modified anion resin was studied in fixed bed column. Effect of bed height and flow rate on the breakthrough curves were investigated. Longer breakthrough time was obtained by increasing the bed height and decreasing the flow rate. Bed service depth time (BDST) model was applied to recount the relationship between bed service time and bed height. The value ofN0was calculated to be 21.4 g/L. Yoon-Nelson model, which fitted well with the experimental data, is allowable to estimate the breakthrough curves and characteristic parameters for phosphate adsorption in the column filled with nanosized FeOOH-modified anion resin.


2014 ◽  
Vol 496-500 ◽  
pp. 259-263 ◽  
Author(s):  
Zhi Hui Du ◽  
Ming Chun Jia ◽  
Jin Feng Men

Two spherical composite adsorbents namely polyacrylonitrilepotassium cobalt hexacyanoferrates (PAN-KCoCF) and polyacrylonitrilepotassium nickel hexacyanoferrates (PAN-KNiCF) were synthesized. The effects of liquid flow rate, bed height and presence of other cations on the adsorption of cesium were investigated by conducting fixed-bed columns. The results showed that the column performed well at lowest flow rate for PAN-KNiCF. Flow rate examined had little influence on the adsorption of PAN-KCoCF. The breakthrough time decreased with decreasing bed height for both PAN-KCoCF and PAN-KNiCF. In addition, the existence of K+, Na+, NH4+, Ca2+and Mg2+in solution caused a reduction of maximum adsorption capacity for both of the composites. The bed depth service time (BDST) model and the Thomas model were used to analyze the experimental data and the model parameters were evaluated. Good agreement of the experimental breakthrough curves with the model predictions was observed.


2011 ◽  
Vol 695 ◽  
pp. 29-32
Author(s):  
Zai Fang Deng ◽  
Xue Gang Luo ◽  
Xiao Yan Lin

The performance of expanding rice husk (ERH) fixed bed column in removing Zn (II) from aqueous solution were studied in this work. Different column design parameters like bed height, flow rate and initial concentration were calculated. It was found that ERH was found to be an effective adsorbent for removal of Zn (II); and when conducted with Zn (II) concentration 12.8 mg L-1and flow rate 10 ml min-1with different bed depths such as 3, 6 and 9 cm, the equilibrium uptake was decreased from 5.181 to 4.33 mg g-1; the equilibrium uptake also decreased from 4.51 to 3.807 mg g-1with increasing of flow rate from 5 to 15 ml min-1and increased from 4.447 to 5.752 mg g-1when initial concentration increased from 12.8 to 35 mg L-1. The dynamics of adsorption process was modeled by bed depth service time (BDST), and indicating the validity of BDST model when applied to the continuous column studies.


Sign in / Sign up

Export Citation Format

Share Document