Electric Field Annealing on 3104 Aluminum Alloy Sheets: Evolution of Microstructure and Texture

2005 ◽  
Vol 105 ◽  
pp. 169-174 ◽  
Author(s):  
Zhuo Chao Hu ◽  
Yu Dong Zhang ◽  
X. Zhao ◽  
Liang Zuo ◽  
Claude Esling

The cold-rolled 3104 aluminum alloy sheets were annealed without and with an electric field. Results show that the electric field can greatly postpone the recovery and recrystallization processes, enhance the Cube texture component. The effect of the electric field lies in that it decreases the concentration of the electronegative vacancies by attracting them to the electropositive sample surface, thus reducing the stored energy for recovery and recrystallization.

2015 ◽  
Vol 29 (10n11) ◽  
pp. 1540020 ◽  
Author(s):  
Tong He ◽  
Yan Wang ◽  
Wei Sun ◽  
Xiang Zhao

The cold-rolled pure copper sheets were annealed with and without a high magnetic field of 12 T. The results showed that the magnetic annealing could promote the formation of the initial recrystallized cube texture. The magnetic annealing did not dramatically change the final annealing textures, but the intensity of the recrystallized cube texture is obviously different. The differences of the recrystallized cube orientation intensity between the specimens with and without the field annealing may be attributed to the effects of the magnetic field on the mobility of grain boundaries.


2005 ◽  
Vol 475-479 ◽  
pp. 389-392 ◽  
Author(s):  
Moo Young Huh ◽  
J.P. Lee ◽  
Jae Chul Lee ◽  
Jong Woo Park ◽  
Young Hoon Chung

The evolution of annealing textures and microstructures in the aluminum alloy 3103, which was subjected to deformation by either cold rolling or equal channel angular rolling (ECAR), was investigated. Samples of AA 3103 sheets were repeatedly deformed by ECAR up to six passes. In addition, AA 3103 was cold rolled to the same hardness level of the ECARed samples. Upon annealing, the cold rolled sample was recrystallized by the discontinuous recrystallization which gave rise to the formation of the cube texture and large grains bigger than 30 µm. In contrast, the ECARed sample was recrystallized by extended recovery which led to the formation of ultra-fine grains having a size smaller than 3.5 µm.


2011 ◽  
Vol 194-196 ◽  
pp. 75-79
Author(s):  
Yan Wu ◽  
Xiang Zhao ◽  
Chang Shu He ◽  
Liang Zuo

Sheets of cold rolled (76%) IF steel were annealed at 650°C for 30min under a 12-tesla magnetic field. During the magnetic field annealing, they were placed at the center of the applied field respectively, being oriented differently with respect to the magnetic field direction. The results show that the high magnetic field annealing prevents the evolution from deformed {111}<110> texture component to recrystallized {111}<112> texture component at the initial stage of recrystallization. For the field annealed specimens, altering the specimen orientation to the magnetic field direction during annealing does not change the final annealing textures. The intensity of main {111} texture components presents a similar periodic variation with respect to the specimen orientation to the magnetic field.


2007 ◽  
Vol 558-559 ◽  
pp. 229-234 ◽  
Author(s):  
Su Hyeon Kim ◽  
Seung Zeon Han ◽  
Chang Joo Kim ◽  
Soon Young Ok ◽  
In Youb Hwang ◽  
...  

Copper foils cold rolled up to 92% reduction exhibited a low intensity of the β-fiber texture and a high intensity of the cube and RD (rolling direction)-rotated cube components. After annealing, the recrystallization texture of the foils could be characterized by the mixture of the cube and the S components. An initial strong cube texture with a large grain size might remain a less developed rolling texture component, cube or RD-rotated cube, which would be the source of the S component in the recrystallization texture.


2012 ◽  
Vol 64 ◽  
pp. 1-7 ◽  
Author(s):  
Wei Wang ◽  
Anne-Laure Helbert ◽  
Thierry Baudin ◽  
François Brisset ◽  
Richard Penelle

2007 ◽  
Vol 353-358 ◽  
pp. 679-682
Author(s):  
Xiao Ling Li ◽  
Wei Liu ◽  
Andrew Godfrey ◽  
Qing Liu

The influence of an electric field on the annealing of high purity (99.999%) cold rolled nickel has been investigated. Annealing was carried out for 2 hours at temperatures between 300oC and 800oC with and without an electric field of strength 2.0KVcm-1. The microstructure and fraction of cube texture resulting were characterized using electron backscattering pattern (EBSP) technique. Annealing in an electric field leads to somewhat smaller average values of the cube fraction and grain sizes compared to annealing without an electric field. The highest temperature (800oC) annealing in an electric field results in microstructures with a lower fractional twin boundary length.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 279
Author(s):  
Sergey Y. Sarvadii ◽  
Andrey K. Gatin ◽  
Vasiliy A. Kharitonov ◽  
Nadezhda V. Dokhlikova ◽  
Sergey A. Ozerin ◽  
...  

The adsorption of CO on the surface of Cu-based nanoparticles was studied in the presence of an external electric field by means of scanning tunneling microscopy (STM) and spectroscopy (STS). Nanoparticles were synthesized on the surface of a graphite support by the impregnation–precipitation method. The chemical composition of the surface of the nanoparticles was determined as a mixture of Cu2O, Cu4O3 and CuO oxides. CO was adsorbed from the gas phase onto the surface of the nanoparticles. During the adsorption process, the potential differences ΔV = +1 or −1 V were applied to the vacuum gap between the sample and the grounded tip. Thus, the system of the STM tip and sample surface formed an asymmetric capacitor, inside which an inhomogeneous electric field existed. The CO adsorption process is accompanied by the partial reduction of nanoparticles. Due to the orientation of the CO molecule in the electric field, the reduction was weak in the case of a positive potential difference, while in the case of a negative potential difference, the reduction rate increased significantly. The ability to control the adsorption process of CO by means of an external electric field was demonstrated. The size of the nanoparticle was shown to be the key factor affecting the adsorption process, and particularly, the strength of the local electric field close to the nanoparticle surface.


1997 ◽  
Vol 3 (S2) ◽  
pp. 609-610 ◽  
Author(s):  
B.L. Thiel ◽  
M.R. Hussein-Ismail ◽  
A.M. Donald

We have performed a theoretical investigation of the effects of space charges in the Environmental SEM (ESEM). The ElectroScan ESEM uses an electrostatic field to cause gas cascade amplification of secondary electron signals. Previous theoretical descriptions of the gas cascade process in the ESEM have assumed that distortion of the electric field due to space charges can be neglected. This assumption has now been tested and shown to be valid.In the ElectroScan ESEM, a positively biased detector is located above the sample, creating an electric field on the order of 105 V/m between the detector and sample surface. Secondary electrons leaving the sample are cascaded though the gas, amplifying the signal and creating positive ions. Because the electrons move very quickly through the gas, they do not accumulate in the specimen-to-detector gap. However, the velocity of the positive ions is limited by diffusion.


Sign in / Sign up

Export Citation Format

Share Document