Multi-Component ZnO-In2O3-SnO2Thin Films Deposited by RF Magnetron Co-Sputtering

2007 ◽  
Vol 124-126 ◽  
pp. 119-122 ◽  
Author(s):  
Chang Sik Son ◽  
Jae Sung Hur ◽  
Byoung Hoon Lee ◽  
Sang Yul Back ◽  
Jeong Seop Lee ◽  
...  

Multi-component ZnO-In2O3-SnO2 thin films have been prepared by RF magnetron co-sputtering using targets composed of In4Sn3O12(99.99%) [1] and ZnO(99.99%) at room temperature. In4Sn3O12 contains less In than commercial ITO, so that it lowers cost. Working pressure was held at 3 mtorr flowing Ar gas 20 sccm and sputtering time was 30 min. RF power ratio [RF1 / ( RF1 + RF2 )] of two guns in sputtering system was varied from 0 to 1. Each RF power was varied 0~100W respectively. The thicknesses of the films were 350~650nm. The composition concentrations of the each film were measured with EPMA and AES. The low resistivity of 1-2 × 10-3 and an average transmittance above 80% in the visible range were attained for the films over a range of δ (0.3 ≤ δ ≤ 0.5). The films also showed a high chemical stability with time and a good uniformity.

1996 ◽  
Vol 11 (7) ◽  
pp. 1659-1664 ◽  
Author(s):  
Ruiping Wang ◽  
Laura L. H. King ◽  
Arthur W. Sleight

Doped zinc oxide thin films were prepared by rf magnetron sputtering using the dopants Al, Ga, In, and Ge. The best results were obtained with Al and Ga doping where room temperature conductivities were as high as 1600 and 1800 ohm-1cm-1, respectively. Hall measurements were performed at 77 K and 298 K. The Hall mobility as in the range of 9 to 22 cm2/Vs, and there was generally very little temperature dependence of the mobility or conductivity. Cation doping levels were as high as 10 at. %, but the conductivities did not increase beyond 3 at. % doping level. For films with high conductivity, electron carrier concentrations from Hall measurements were significantly lower than the concentrations of dopants. Optical measurements on the films showed that the average transmittance though the visible range is higher than 85%. The measurements also indicated a blueshift of the absorption edge with doping.


2015 ◽  
Vol 1119 ◽  
pp. 29-33
Author(s):  
Farah Lyana Shain ◽  
Azmizam Manie Mani ◽  
Lam Mui Li ◽  
Umar Faruk Shuib ◽  
Saafie Salleh ◽  
...  

This paper investigates the dependence of pressure onto characteristic of Aluminium Zinc Oxide (AZO) thin films. Films were deposited on a glass substrate by RF Magnetron Sputtering using AZO ceramic target with 99.99% purity. Sputtering was performed with RF power of 100 Watt and the deposition times were fixed at 40 minutes. The argon pressures were varied from 10 sccm to 30 sccm in order to achieve different working pressure during deposition in order to study the effect of pressure towards characteristic of films. AZO thin films on different argon pressure were successfully deposited onto glass substrate. All films are polycrystalline with (0 0 2) preferential orientation and fully transparent films with high transparency above 80 percent were achieved. The film deposited at 10 sccm argon flow exhibit the highest growth rate at 7.9 nm/m, highest intensity XRD peak with higher crystalline quality and lowest resistivity that is 2.7 x 10ˉ2Ω cm .


2004 ◽  
Vol 831 ◽  
Author(s):  
Muhammad Maqbool ◽  
H. H. Richardson ◽  
M. E. Kordesch

ABSTRACTPraseodymium (Pr) doped aluminum nitride (AlN), gallium nitride (GaN) and boron nitride (BN) thin films deposited on Si (111) substrate are studied with cathodoluminescence. AlN:Pr and GaN:Pr films are deposited at 77 K and room temperature respectively while BN:Pr films at 750 K by reactive sputtering, using 100–200 Watts RF power, 5–10 mTorr nitrogen. Metal targets of Al and B with Pr and a liquid target of Ga with solid Pr are used. The dominant peaks observed in the visible range result from 3P0 → 3H4, 3P1→ 3H5, and 3P0 → 3F2 transitions in AlN:Pr, 3P0 → 3H4, 3P0 → 3H6, and 3P0 → 3F2 transitions in GaN:Pr and from 3P0 → 3H4, 3P1→ 3H5, 3P0 → 3H6, and 3P0 → 3F2 transitions in BN:Pr. Additional peaks are observed from AlN:Pr at 335 nm and 385 nm from 1S0 → 1D2 and 1S0 → 1I6 which are not observed in GaN:Pr and BN:Pr films.


Author(s):  
S.K. Streiffer ◽  
C.B. Eom ◽  
J.C. Bravman ◽  
T.H. Geballet

The study of very thin (<15 nm) YBa2Cu3O7−δ (YBCO) films is necessary both for investigating the nucleation and growth of films of this material and for achieving a better understanding of multilayer structures incorporating such thin YBCO regions. We have used transmission electron microscopy to examine ultra-thin films grown on MgO substrates by single-target, off-axis magnetron sputtering; details of the deposition process have been reported elsewhere. Briefly, polished MgO substrates were attached to a block placed at 90° to the sputtering target and heated to 650 °C. The sputtering was performed in 10 mtorr oxygen and 40 mtorr argon with an rf power of 125 watts. After deposition, the chamber was vented to 500 torr oxygen and allowed to cool to room temperature. Because of YBCO’s susceptibility to environmental degradation and oxygen loss, the technique of Xi, et al. was followed and a protective overlayer of amorphous YBCO was deposited on the just-grown films.


2012 ◽  
Vol 526 ◽  
pp. 221-224 ◽  
Author(s):  
A. Amaral ◽  
P. Brogueira ◽  
O. Conde ◽  
G. Lavareda ◽  
C. Nunes de Carvalho

2007 ◽  
Vol 561-565 ◽  
pp. 1161-1164
Author(s):  
Xiao Na Li ◽  
Bing Hu ◽  
Chuang Dong ◽  
Xin Jiang

Fe/Si multi-layer films were fabricated on Si (100) substrates utilizing radio frequency magnetron sputtering system. Si/β-FeSi2 structure was found in the films after the deposition. Structural characterization of Fe-silicide sample was performed by transmission electron microscopy, to explore the dependence of the microstructure of β-FeSi2 film on the preparation parameters. It was found that β-FeSi2 particles were formed after the deposition without annealing, whose size is less than 20nm ,with a direct band-gap of 0.94eV in room temperature. After annealing at 850°C, particles grow lager, however the stability of thin films was still good.


2006 ◽  
Vol 957 ◽  
Author(s):  
Luis Manuel Angelats ◽  
Maharaj S Tomar ◽  
Rahul Singhal ◽  
Oscar P Perez ◽  
Hector J Jimenez ◽  
...  

ABSTRACTZn0.90Co0.10O and Zn0.85[Co0.50Fe0.50]0.15O targets were used to grow thin films by rf magnetron sputtering. XRD patterns of the films showed a strong preferred orientation along c-axis. Zn0.90Co0.10O film showed a transmittance above 75% in the visible range, while the transmittance of the Zn0.85[Co0.50Fe0.50]0.15O film was about 45%; with three absorption peaks attributed to d-d transitions of tetrahedrally coordinated Co2+. The band gap values for Zn0.90Co0.10O and Zn0.85[Co0.50Fe0.50]0.15O films were 2.95 and 2.70 eV respectively, which are slightly less than ZnO bulk. The Zn0.90Co0.10O film showed a relatively large positive magnetoresistance (MR) at the high magnetic field in the temperature range from 7 to 50 K, which reached 11.9% a 7K for the magnetoresistance. The lowest MR was found at 100 K. From M-H curve measured at room temperature shown a probable antiferromagnetic behavior, although was possible to observe little coercive field of 30 Oe and 40 Oe for Zn0.90Co0.10O and Zn0.85[Co0.50Fe0.50]0.15O films, respectively.


2008 ◽  
Vol 254 (22) ◽  
pp. 7459-7463 ◽  
Author(s):  
Yuhua Xiao ◽  
Shihui Ge ◽  
Li Xi ◽  
Yalu Zuo ◽  
Xueyun Zhou ◽  
...  

2009 ◽  
Vol 94 (24) ◽  
pp. 242902 ◽  
Author(s):  
Kazuki Nagashima ◽  
Takeshi Yanagida ◽  
Keisuke Oka ◽  
Tomoji Kawai

Sign in / Sign up

Export Citation Format

Share Document