Electronic Properties Carbon Film Using Chemical Process

2007 ◽  
Vol 124-126 ◽  
pp. 251-254
Author(s):  
Sang Heon Lee

Electro-deposition of carbon film on silicon substrate in methanol solution was carried out with various current density, solution temperature and electrode spacing between anode and cathode. The carbon films with smooth surface morphology and high electrical resistance were formed when the distance between electrode was relatively wider. The electrical resistance of the carbon films were independent of both current density and solution temperature.

2004 ◽  
Vol 36 (2) ◽  
pp. 105-112 ◽  
Author(s):  
M. Spasojevic ◽  
Aleksa Maricic ◽  
Lidija Rafailovic

Cobalt and nickel alloy powders were obtained by electrochemical deposition on a titanium cathode from an ammonium solution of cobalt and nickel sulfate. Powders of a specific chemical structure and composition, particle shape and size were obtained by an appropriate choice of electrolysis parameters, current density, deposit growth rate and solution temperature and composition. Within the current density range of 5 - 450 mAcm-2, the current density did not significantly affect the chemical composition of the powders, but had a significant effect on the particle structure, shape and size. Crystal particles formed at a current density lower than 30 mAcm-2. Amorphous powders were obtained at a current density higher than 50 mAcm-2. Structural changes of the obtained amorphous powder of 55mol.% Ni, 45 mol.% Co, pressed under the pressure of 100 MPa, were investigated by measuring the temperature dependence of electrical resistance in isothermal and non-isothermal conditions varying from room temperature to 750?C. The process of thermal stabilization of defects that appeared during pressing occurred within the temperature range of 200-390?C. The DSC method was used to determine that the powder crystallization process occurred in two stages with peak temperatures of the exothermal maximum in the first and second stage of T1 = 438?C and T2 = 573?C, respectively. A distinct correlation between the change of electrical resistance and the crystallization process was established. The reduction of electrical resistively occurs during each crystallization stage.


Author(s):  
A. C. Faberge

Benzylamine tartrate (m.p. 63°C) seems to be a better and more convenient substrate for making carbon films than any of those previously proposed. Using it in the manner described, it is easy consistently to make batches of specimen grids as open as 200 mesh with no broken squares, and without individual handling of the grids. Benzylamine tartrate (hereafter called B.T.) is a viscous liquid when molten, which sets to a glass. Unlike polymeric substrates it does not swell before dissolving; such swelling of the substrate seems to be a principal cause of breakage of carbon film. Mass spectroscopic examination indicates a vapor pressure less than 10−9 Torr at room temperature.


1991 ◽  
Vol 223 ◽  
Author(s):  
Qin Fuguang ◽  
Yao Zhenyu ◽  
Ren Zhizhang ◽  
S.-T. Lee ◽  
I. Bello ◽  
...  

ABSTRACTDirect ion beam deposition of carbon films on silicon in the ion energy range of 15–500eV and temperature range of 25–800°C has been studied using mass selected C+ ions under ultrahigh vacuum. The films were characterized with X-ray photoelectron spectroscopy, Raman spectroscopy, and transmission electron microscopy and diffraction analysis. Films deposited at room temperature consist mainly of amorphous carbon. Deposition at a higher temperature, or post-implantation annealing leads to formation of microcrystalline graphite. A deposition temperature above 800°C favors the formation of microcrystalline graphite with a preferred orientation in the (0001) direction. No evidence of diamond formation was observed in these films.


1994 ◽  
Vol 59 (6) ◽  
pp. 1305-1310 ◽  
Author(s):  
Emad E. Abdel Aal ◽  
Mohamed M. Hefny

Galvanostatic anodization of lead in borate solutions reveals that lead can form a barrier type oxide film. The rate of growth, R, fulfils the empirical relation, R = aib within the current density i range from 1.16 .10-4 to 3.19 .10-4 A cm-2. The magnitudes of the parameters a and b are 6.9 . 103 and 1.6, respectively, it has been found that the high field approximation is applicable for the oxide growth on lead. The coefficients of the dependence of R on solution temperature, T, pH and borate ion concentration, c, viz. (∂R/∂T), (∂R/∂pH) and (∂R/∂log c) are -18 . 10-4, -0.13 and 0.41, respectively.


2021 ◽  
pp. 2103533
Author(s):  
Rui Liu ◽  
Zhichao Gong ◽  
Jianbin Liu ◽  
Juncai Dong ◽  
Jiangwen Liao ◽  
...  

2005 ◽  
Vol 289 (6) ◽  
pp. H2468-H2477 ◽  
Author(s):  
J. James Wiley ◽  
Raymond E. Ideker ◽  
William M. Smith ◽  
Andrew E. Pollard

This study was designed to test the feasibility of using microfabricated electrodes to record surface potentials with sufficiently fine spatial resolution to measure the potential gradients necessary for improved computation of transmembrane current density. To assess that feasibility, we recorded unipolar electrograms from perfused rabbit right ventricular free wall epicardium ( n = 6) using electrode arrays that included 25-μm sensors fabricated onto a flexible substrate with 75-μm interelectrode spacing. Electrode spacing was therefore on the size scale of an individual myocyte. Signal conditioning adjacent to the sensors to control lead noise was achieved by routing traces from the electrodes to the back side of the substrate where buffer amplifiers were located. For comparison, recordings were also made using arrays built from chloridized silver wire electrodes of either 50-μm (fine wire) or 250-μm (coarse wire) diameters. Electrode separations were necessarily wider than with microfabricated arrays. Comparable signal-to-noise ratios (SNRs) of 21.2 ± 2.2, 32.5 ± 4.1, and 22.9 ± 0.7 for electrograms recorded using microfabricated sensors ( n = 78), fine wires ( n = 78), and coarse wires ( n = 78), respectively, were found. High SNRs were maintained in bipolar electrograms assembled using spatial combinations of the unipolar electrograms necessary for the potential gradient measurements and in second-difference electrograms assembled using spatial combinations of the bipolar electrograms necessary for surface Laplacian (SL) measurements. Simulations incorporating a bidomain representation of tissue structure and a two-dimensional network of guinea pig myocytes prescribed following the Luo and Rudy dynamic membrane equations were completed using 12.5-μm spatial resolution to assess contributions of electrode spacing to the potential gradient and SL measurements. In those simulations, increases in electrode separation from 12.5 to 75.0, 237.5, and 875.0 μm, which were separations comparable to the finest available with our microfabricated, fine wire, and coarse wire arrays, led to 10%, 42%, and 81% reductions in maximum potential gradients and 33%, 76%, and 96% reductions in peak-to-peak SLs. Maintenance of comparable SNRs for source electrograms was therefore important because microfabrication provides a highly attractive methods to achieve spatial resolutions necessary for improved computation of transmembrane current density.


1999 ◽  
Vol 585 ◽  
Author(s):  
Douglas H. Lowndes ◽  
Vladimir I. Merkulov ◽  
L. R. Baylor ◽  
G. E. Jellison ◽  
D. B. Poker ◽  
...  

AbstractThe principal interests in this work are energetic-beam control of carbon-film properties and the roles of doping and surface morphology in field emission. Carbon films with variable sp3-bonding fraction were deposited on n-type Si substrates by ArF (193 nm) pulsed-laser ablation (PLA) of a pyrolytic graphite target, and by direct metal ion beam deposition (DMIBD) using a primary Cs+ beam to generate the secondary C- deposition beam. The PLA films are undoped while the DMIBD films are doped with Cs. The kinetic energy (KE) of the incident C atoms/ions was controlled and varied over the range from ∼25 eV to ∼175 eV. Earlier studies have shown that C films' sp3-bonding fraction and diamond-like properties can be maximized by using KE values near 90 eV. The films' surface morphology, sp3–bonding fraction, and Cs-content were determined as a function of KE using atomic force microscopy, TEM/EELS, Rutherford backscattering and nuclear reaction measurements, respectively. Field emission (FE) from these very smooth undoped and Cs-containing films is compared with the FE from two types of deliberately nanostructured carbon films, namely hot-filament chemical vapor deposition (HF-CVD) carbon and carbon nanotubes grown by plasma-enhanced CVD. Electron field emission (FE) characteristics were measured using ∼25-μm, ∼5-μm and ∼1-μm diameter probes that were scanned with ∼75 nm resolution in the x-, y-, and z-directions in a vacuum chamber (∼5 × 10-7 torr base pressure) equipped with a video camera for viewing. The hydrogen-free and very smooth a-D or a-C films (with high or low sp3 content, and with or without ∼1% Cs doping) produced by PLD and DMIBD are not good field emitters. Conditioning accompanied by arcing was required to obtain emission, so that their subsequent FE is characteristic of the arc-produced damage site. However, deliberate surface texturing can eliminate the need for conditioning, apparently by geometrical enhancement of the local electric field. But the most promising approach for producing macroscopically flat FE cathodes is to use materials that are highly nanostructured, either by the deposition process (e.g. HF-CVD carbon) or intrinsically (e.g. carbon nanotubes). HF-CVD films were found to combine a number of desirable properties for FE displays and vacuum microelectronics, including the absence of conditioning, low turn-on fields, high emission site density, and apparent stability and durability during limited long-term testing. Preliminary FE measurements revealed that vertically aligned carbon nanotubes are equally promising.


Friction ◽  
2021 ◽  
Author(s):  
Zonglin Pan ◽  
Qinzhao Zhou ◽  
Pengfei Wang ◽  
Dongfeng Diao

AbstractReducing the friction force between the commercial archwire and bracket during the orthodontic treatment in general dental practice has attracted worldwide interest. An investigation on the friction and wear behaviors of the uncoated and carbon film coated stainless steel archwires running against stainless steel brackets was systematically conducted. The carbon films were prepared at substrate bias voltages from +5 to +50 V using an electron cyclotron resonance plasma sputtering system. With increasing substrate bias voltage, local microstructures of the carbon films evolved from amorphous carbon to graphene nanocrystallites. Both static and stable friction coefficients of the archwire-bracket contacts sliding in dry and wet (artificial saliva) conditions decreased with the deposition of carbon films on the archwires. Low friction coefficient of 0.12 was achieved in artificial saliva environment for the graphene sheets embedded carbon (GSEC) film coated archwire. Deterioration of the friction behavior of the GSEC film coated archwire occurred after immersion of the archwire in artificial saliva solution for different periods before friction test. However, moderate friction coefficient of less than 0.30 sustained after 30 days immersion periods. The low friction mechanism is clarified to be the formation of salivary adsorbed layer and graphene sheets containing tribofilm on the contact interfaces. The robust low friction and low wear performances of the GSEC film coated archwires make them good candidates for clinical orthodontic treatment applications.


TANSO ◽  
1973 ◽  
Vol 1973 (72) ◽  
pp. 8-13 ◽  
Author(s):  
Sadaharu TOYODA ◽  
Toshio YAMAKAWA ◽  
Yoshio YAMADA ◽  
Kazuo KOBAYASHI

Sign in / Sign up

Export Citation Format

Share Document