scholarly journals Pengaruh Rapat Arus dan Waktu Pelapisan Nikel pada AISI 410 dengan Metode Pulse Electrodeposition terhadap Strukturmikro dan Laju Korosi [The Influences of Current Density and Time on Microstructure and Corrosion Rate Nickel Coating in Aisi 410 by Pulse Electro Deposition Method]

Metalurgi ◽  
2017 ◽  
Vol 32 (2) ◽  
pp. 77
Author(s):  
Rivaldo Ramadhana Saputra ◽  
Soesaptri Oediyani ◽  
Yulinda Lestari ◽  
Efendi Mabruri
2014 ◽  
Vol 971-973 ◽  
pp. 161-164
Author(s):  
Xiao Zhen Liu ◽  
Le Tian Xia ◽  
Jian Qiang Gen ◽  
Xiao Zhou Liu ◽  
Jie Chen ◽  
...  

Mo-Ni coatings were prepared on Ni alloy by pulse electrodeposition method. The effects of current density, electrodeposition temperature, frequency, duty cycle and electrodeposition time on microhardness of Mo-Ni coating were researched, respectively. Microhardness of Mo-Ni coating increases with the increase of current density, electrodeposition temperature, frequency and electro-deposition time in 17.75 A/dm2 ~ 19.25 A/dm2. 21 °C~ 25 °C, 1000 Hz ~ 5000 Hz and 10 min ~ 20 min, respectively. Microhardness of Mo-Ni coating decreases with the increase of electrodeposition temperature, electrodeposition time and duty cycle in 25 °C ~ 37 °C, 20 min ~ 30 min and 0.5 ~ 0.9, respectively. In the range of current density from 19.25A/dm2 to 20.75 A/dm2, microhardness of Mo-Ni coating is neariy constant with the increase of current density. When electrodeposition parameters: current density 19.25 A/dm2, electro-deposition temperature 25 °C, frequency 5000 Hz, duty cycle 0.5 and electrodeposition time 20 min, microhardness of Mo-Ni coatin is as high as 707.9 HV.


2014 ◽  
Vol 896 ◽  
pp. 245-248 ◽  
Author(s):  
Candra Kurniawan ◽  
Hayati M.A. Sholihat ◽  
Kemas Ahmad Zaini Thosin ◽  
Muljadi ◽  
Prijo Sardjono

Despite of its excellence magnetic quality, one of the critical properties of PrFeB based permanent magnet is a low corrosion resistance so it can be oxidized easily which can reduce its magnetic properties. In this study, Nickel coating has been performed for bonded PrFeB magnet by the electroplating method using Nickel-Watts bath-type as the electrolyte to improve the corrosion resistance. The varying amount of the electrolyte compounds used to have the optimized composition indicated by the corrosion resistance measurement. The solution composition used was NiSO4 (230-380 g/L), NiCl2 (30-60 g/L), and H3BO3 (30 and 45 g/L) with a fixed value of other parameters. Characterization used including the immersion corrosion test, microstructure analysis, and magnetic properties. Based on the corrosion rate measurement, the highest corrosion resistant of Nickel coated PrFeB magnet achieved from the electrolyte composition of NiSO4: NiCl2: H3BO3 = 380: 60: 30 g/L with a plating time and current density (J) of 60 minutes and 40 mA/cm2 respectively. The corrosion rate data showed that the Nickel metal coating can improve the corrosion resistance of bonded PrFeB magnet up to 29 times than of the substrate. The SEM images showed that the thickness of the Nickel coating on the optimum electrolyte composition was in average value of 35.1 µm. The overall samples has a magnetic remanence value (Br) reached ≥ 6 kG, so it has enough properties to be applied in devices such as generators and electric motors.


Author(s):  
Qiuyun Wang ◽  
Ting Ge ◽  
Yitong Liu ◽  
Anmin Chen ◽  
Suyu Li ◽  
...  

This paper studied the effect of lens-to-target distance (LTTD) on the determination of Cr in water by laser-induced breakdown spectroscopy and electro-deposition (ED) method. First, the metal ED method realized...


2018 ◽  
Vol 303 ◽  
pp. 276-281 ◽  
Author(s):  
V.S.K. Yadav ◽  
Yuseong Noh ◽  
Hyunsu Han ◽  
Won Bae Kim

2004 ◽  
Vol 11 (04n05) ◽  
pp. 433-442 ◽  
Author(s):  
C. Y. DAI ◽  
Y. PAN ◽  
S. JIANG ◽  
Y. C. ZHOU

The nanocrystalline nickel coating was synthesized by pulse-jet electrodeposition from modified Watts bath. Pulse and jet plating was employed to increase the deposition current density, decrease diffusion layer, increase the nucleation rate and in this case the prepared method would result in fine-grained deposits. Transmission and scanning electron microscopy and X-ray diffraction (XRD) were used to study the microstructure, the surface morphology, the crystal preferred orientation and the variety of the lattice parameter respectively. The influence of pulse parameters, namely peak current density, the duty cycle and pulse frequency on the grain size, surface morphology, crystal orientation and microstructure was studied. The results showed that with increasing peak current density, the deposit grain size was found to decrease markedly in other parameters at constant. However, in our experiment it was found that the grain size increased slightly with increasing pulse frequency. For higher peak current density, the surface morphology was smoother. The crystal orientation progressively changed from an almost random distribution to a strong (111) texture. This means that the peak current density was the dominated parameter to effect the microstructure of electrodeposited nanocrystalline nickel coating. In addition, the lattice parameter for the deposited nickel is calculated from XRD and it is found that the calculated value is less than the lattice parameter for the perfect nickel single crystal. This phenomenon is explained by the crystal lattice mismatch.


2018 ◽  
Vol 2018 ◽  
pp. 1-5
Author(s):  
Hui Fan ◽  
Yangpei Zhao ◽  
Shankui Wang

An effective method to improve corrosion resistance for the nickel coating on the stainless steel(1Cr18Ni9) is described. The nickel coating was predeposited on the 1Cr18Ni9 by using the jet electrodeposition technology. Then the laser remelting was conducted on the predeposited Ni coating in order to strengthen the coating’s microstructure and the interface between the substrate and the Ni coating. The experimental results revealed that, at current density of 40 A/dm2, the deposited coating had the optimal corrosion resistance because of refined grains and dense interior-structure. After laser remelting, the bonding state between the coating and substrate evolved to a new metallurgical combination from originally mechanical combination. The corrosion rate comparison indicated that Ni coating with compound process of jet electrodeposition and laser remelting had higher corrosion resistance compared with bare 1Cr18Ni9 as well as jet electrodeposited Ni coating.


2018 ◽  
Vol 939 ◽  
pp. 120-126
Author(s):  
Chien Wan Hun ◽  
Chien Wen Yeh ◽  
Shao Fu Chang ◽  
Wern Dare Jheng ◽  
Chih Yuan Chen ◽  
...  

The energy materials such as titania (TiO2) and alumina (Al2O3) are the environmental friendly materials. In this paper the nanostructure of high surface area titania and alumina are fabricated by anodization process and assistance in electrochemical mold. In general, academic or research institutes can simply control the required experimental conditions in a small sample; however, it’s difficult to control the stable parameters in a large surface and a large number of nanostructural products in the industry production. In order to solve the problems of unstable current density and temperature we have designed a cooling functional electrochemical mold which can improve the nanostructural quality of energy materials during a large number production. The electrochemical mold is used for a local surface treatment at an isothermal temperature controlling. The mold limits sample for a specific treated area and current density in the electrolyte. The mold can be used for the assistance of electrolysis, electro-polishing, electro-deposition, anodization, etching, chemical deposition, pickling, and caustic processes. The mold structure includes fixture group, water-cooling electrode group, and electrode conductive group.


2014 ◽  
Vol 61 (3) ◽  
pp. 158-165 ◽  
Author(s):  
Shamsad Ahmad

Purpose – The purpose of this paper was to explore the possibility of establishing an empirical correlation between concrete resistivity and reinforcement corrosion rate utilizing the experimental data generated by measuring corrosion current density of reinforced concrete specimens subjected to chloride-induced corrosion at different levels of concrete resistivity. Design/methodology/approach – To generate concrete resistivity vs corrosion current density data in a wide range, ten reinforced concrete specimens were prepared and allowed to corrode under severe chloride exposure. After significantly corroding the specimens, they were removed from the chloride exposure and were subjected to different moisture levels for achieving variation in the resistivity of concrete so that reasonably good number of resistivity vs corrosion rate data can be obtained. Resistivity and corrosion current density tests were conducted for all the ten specimens and their values were measured in wide ranges of 0.8-65 kΩ·cm and 0.08-11 μA/cm2, respectively. Findings – Data generated through this study were utilized to obtain an empirical relationship between concrete resistivity and corrosion current density. The trend of results obtained using the empirical correlation model developed in the present study was in close agreement with that obtained using a theoretical model reported in literature. Originality/value – The empirical correlation between concrete resistivity and reinforcement corrosion rate obtained under this work can be used for evaluation of reinforcement corrosion utilizing the resistivity values measured non-destructively.


2013 ◽  
Vol 850-851 ◽  
pp. 12-15 ◽  
Author(s):  
Yan Shi ◽  
Yong Ping Liu ◽  
Yan Jun Xin

In this study, WO3/TiO2nanotube array photoelectrodes were fabricated by anodic oxidation and electro-deposition method. The effects of WO3, H2O2, oxygen, and pH value were investigated in the degradation of Dimethyl phthalate (DMP). Results show that the photocatalytic property of the photoelectrode was improved by the modification of WO3. The degradation rate of DMP was increased by 9.3% after 120min irradiation. H2O2could significantly promote the degradation of DMP. The degradation rate of DMP was increased by 27.9% and arrived 97.5% after 120 min irradiation. A certain amount of O2added to the solution had positive effect on the degradation of DMP. While excessive O2would undermine the degradation. The degradation rate of DMP was improved in both acidic condition and alkaline condition. It was separately increased by 38.4% and 40.2% at the pH value of 3.0 and 7.0, compared with that of pH = 7.


Sign in / Sign up

Export Citation Format

Share Document