Phase Transformations in Ferromagnetic Nanostructured FePd Alloy under Severe Plastic Deformation and Annealing

2010 ◽  
Vol 168-169 ◽  
pp. 392-395 ◽  
Author(s):  
N.I. Vlasova ◽  
V.S. Gaviko ◽  
A.G. Popov ◽  
N.N. Shchegoleva ◽  
L.A. Stashkova ◽  
...  

Equiatomic FePd alloy in the ordered state has been processed by means of high-pressure torsion deformation (HPTD) and then annealed. X-ray diffraction (XRD), transmission electron microscopy (TEM), and magnetic measurements have been carried out. HPTD results in an order-disorder transformation of the initial ordered L10-phase (s.g. P4/mmm) into a disordered fcc phase (s.g. Fm-3m) through the body-centered tetragonal (bct) phase (s.g. I4/mmm). Subsequent annealing restores the L10-phase.

2011 ◽  
Vol 295-297 ◽  
pp. 869-872
Author(s):  
Qing Shan Li ◽  
Xin Wang ◽  
Jun Liu ◽  
Guang Zhong Xing

Six-ring Rock is widely used as containers of water and additives to produce health care products. In this paper, the composition and microstructure of Six-ring Rock have been investigated by using scanning electron microscopy, energy dispersive spectrometer, transmission electron microscopy, x-ray diffraction and other technologies. Results show that Six-ring Rock is composed of CaMg(CO3)2, SiO2 and KAlSi3O8. Fe atoms exist in CaMg(CO3)2 by replacing Mg atoms. Six-ring Rock shows nano-size lamellar and acerose microstructures on the surface, and nano-size monocrystals in the body. Six-ring Rock is a natural nano structure mineral.


Open Physics ◽  
2010 ◽  
Vol 8 (4) ◽  
Author(s):  
Lidia Rednic ◽  
Iosif Deac ◽  
Eugen Dorolti ◽  
Marin Coldea ◽  
Vasile Rednic ◽  
...  

AbstractX-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy (TEM) and magnetic measurements as a function of applied magnetic field and temperature for In1−x MnxSb (0.05≤x≤0.2) system are reported. Magnetic measurements performed at high and small magnetic field in ZFC and FC indicate the coexistence of ferromagnetic In1−x MnxSb solid solution and two types of magnetic cluster: ferromagnetic MnSb and ferrimagnetic Mn2Sb. XPS valence band and Mn 2p core level spectra have confirmed the presence of MnSb and Mn2Sb phases. TEM images show some manganese antimonide phase microinclusions with dimension between (30–40) nm.


2014 ◽  
Vol 915-916 ◽  
pp. 933-941 ◽  
Author(s):  
Zhong Jie Zhang ◽  
Chang Yu Lu ◽  
Wei Huang ◽  
Wei Sheng Guan ◽  
Yue Xin Peng

The effective remove to tetracycline still remains a big challenge for scientists. In this work, we used a new method for preparing functional magnetic CNTS with ferrite nanoparticles. A wide range of techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and magnetic measurements were applied to characterize the obtained Fe2O3/CNTs. Moreover, we have also studied the properties of adsorbent to tetracycline. In addition, we have found that the Fe2O3/CNTs are better reusable adsorbent than other traditional adsorbents by magnetic separation recycling method.


2002 ◽  
Vol 737 ◽  
Author(s):  
X.B. Zeng ◽  
X.B. Liao ◽  
H.W. Diao ◽  
Z.H. Hu ◽  
Y.Y. Xu ◽  
...  

ABSTRACTPolymorphous Si nanowires (SiNWS) have been successfully synthesized on Si wafer by plasma enhanced chemical vapor deposition (PECVD) at 440°C, using silane as the Si source and Au as the catalyst. To grow the polymorphous SiNWS preannealing the Si substrate with Au film at 1100 °C is needed. The diameters of Si nanowires range from 15 to 100 nm. The structure, morphology and chemical composition of the SiNWS have been characterized by high resolution x-ray diffraction, scanning electron microscopy, transmission electron microscopy, as well as energy dispersive x-ray spectroscopy. A few interesting nanowires with Au nanoclusters uniformly distributed in the body of the wire were also produced by this technique.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1959
Author(s):  
Matjaž Kristl ◽  
Sašo Gyergyek ◽  
Srečo D. Škapin ◽  
Janja Kristl

The paper reports the synthesis of nickel tellurides via a mechanochemical method from elemental precursors. NiTe, NiTe2, and Ni2Te3 were prepared by milling in stainless steel vials under nitrogen, using milling times from 1 h to 12 h. The products were characterized by powder X-ray diffraction (pXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS), vibrating sample magnetometer (VSM), UV-VIS spectrometry, and thermal analysis (TGA and DSC). The products were obtained in the form of aggregates, several hundreds of nanometers in size, consisting of smaller nanosized crystallites. The magnetic measurements revealed a ferromagnetic behavior at room temperature. The band gap energies calculated using Tauc plots for NiTe, NiTe2, and Ni2Te3 were 3.59, 3.94, and 3.70 eV, respectively. The mechanochemical process has proved to be a simple and successful method for the preparation of binary nickel tellurides, avoiding the use of solvents, toxic precursors, and energy-consuming reaction conditions.


Nanomaterials ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 6 ◽  
Author(s):  
Martin Stückler ◽  
Heinz Krenn ◽  
Reinhard Pippan ◽  
Lukas Weissitsch ◽  
Stefan Wurster ◽  
...  

Samples consisting of one ferromagnetic and one diamagnetic component which are immiscible at the thermodynamic equilibrium (Co-Cu, Fe-Cu, Fe-Ag) are processed by high-pressure torsion at various compositions. The received microstructures are investigated by electron microscopy and synchrotron X-ray diffraction, showing a microstructural saturation. Results gained from microstructural investigations are correlated to magnetometry data. The Co-Cu samples show mainly ferromagnetic behavior and a decrease in coercivity with increasing Co-content. The saturation microstructure of Fe-Cu samples is found to be dual phase. Results of magnetic measurements also revealed the occurrence of two different magnetic phases in this system. For Fe-Ag, the microstructural and magnetic results indicate that no intermixing between the elemental phases takes place.


2005 ◽  
Vol 482 ◽  
pp. 183-186 ◽  
Author(s):  
Jakub Čížek ◽  
Ivan Procházka ◽  
Bohumil Smola ◽  
Ivana Stulíková ◽  
Radomír Kužel ◽  
...  

Bulk samples of pure Mg and Mg-Gd alloys were prepared by high-pressure torsion (HPT). The HPT made samples exhibit ultra fine grained (UFG) structure with grain size around 100 nm. Results of microstructure investigations of the UFG samples obtained by positron lifetime (PL) spectroscopy, transmission electron microscopy (TEM) and X-ray diffraction (XRD) are presented. In particular, lattice defects introduced by HPT were characterized. The data obtained at atomistic level are compared with macroscopic properties given by microhardness measurements.


2012 ◽  
Vol 585 ◽  
pp. 100-104
Author(s):  
Sudhakar Panday ◽  
B.S. Sunder Daniel ◽  
P. Jeevanandam

Nanocrystalline Co82Ni18 alloy was synthesized by polyol reduction of cobalt-nickel hydroxide precursor. X-ray diffraction results indicated the formation of fcc phase alloy and the crystallite size was found to be about 19 nm. Scanning electron microscopy and transmission electron microscopy images showed the morphology of particles close to spheres and stoichiometry of the precursor and the alloy was obtained by the energy dispersive X-ray analysis. Selected area electron diffraction pattern indicated the polycrystalline nature of the alloy particles. The saturation magnetization of the nanocrystalline alloy was about 107 (emu/g) at room temperature and the M-H measurements at 300 K and 5 K indicated that the nanocrystalline alloy exhibits close to superparamagetic behaviour.


2016 ◽  
Vol 879 ◽  
pp. 732-737 ◽  
Author(s):  
Anita Heczel ◽  
Lola Lilensten ◽  
Julie Bourgon ◽  
Loic Perrière ◽  
Jean Philippe Couzine ◽  
...  

High-Pressure Torsion (HPT) is one of the most effective severe plastic deformation techniques in grain refinement. The goal of this study was to investigate the influence of HPT on the microstructure and hardness of a Ti-rich High-Entropy Alloy (HEA). The evolution of the grain size due to 1 turn of HPT was studied by transmission electron microscopy. Besides the refinement of the microstructure, a phase transition also occurred during HPT, as revealed by X-ray diffraction. The initial bcc structure transformed into a martensitic phase throughout the material. The features of this phase transformation were studied on a sample compressed to low strain values. The hardness as a function of the distance from the center in the HPT-processed disk was measured and correlated to the microstructure.


1995 ◽  
Vol 384 ◽  
Author(s):  
I. Hussain ◽  
I. Gameson ◽  
P.A. Anderson ◽  
P. P. Edwards

ABSTRACTThis investigation has looked at the preparation of nanoscale cobalt particles by a simple solid state reaction involving cobalt (II) nitrate and zeolite Na-X under vacuum conditions followed by reduction in an hydrogen atmosphere. Samples were characterised by powder x-ray diffraction and scanning/transmission electron microscopy (TEM). Magnetic measurements were performed on the samples below 300 K using a SQUID magnetometer.


Sign in / Sign up

Export Citation Format

Share Document