Evolution of Twin-Related Variants of α Phase in a Ti-V-Cu Alloy

2011 ◽  
Vol 172-174 ◽  
pp. 481-486 ◽  
Author(s):  
Hoi Pang Ng ◽  
Colleen J. Bettles ◽  
Barry C. Muddle

The precipitation of a-phase has been investigated in a concentrated b-alloy of the Ti-V-Cu system. a-precipitates in geometrically coupled forms were developed in the alloy when subject to isothermal ageing at 500°C. High-resolution transmission electron microscopy (HRTEM) revealed that a-phase embryos tend to nucleate in a symmetrical manner directly from an early-stage solute-partitioned diffusional product. The a-precipitates so developed constitute twin-related variants characterized by a twin plane lying on one of the {0111}a planes. The results are discussed with respect to the role of Cu on the formation of heterogeneous nucleation sites for a-phase.

Author(s):  
Benjamin F. Trump ◽  
Irene K. Berezesky ◽  
Raymond T. Jones

The role of electron microscopy and associated techniques is assured in diagnostic pathology. At the present time, most of the progress has been made on tissues examined by transmission electron microscopy (TEM) and correlated with light microscopy (LM) and by cytochemistry using both plastic and paraffin-embedded materials. As mentioned elsewhere in this symposium, this has revolutionized many fields of pathology including diagnostic, anatomic and clinical pathology. It began with the kidney; however, it has now been extended to most other organ systems and to tumor diagnosis in general. The results of the past few years tend to indicate the future directions and needs of this expanding field. Now, in addition to routine EM, pathologists have access to the many newly developed methods and instruments mentioned below which should aid considerably not only in diagnostic pathology but in investigative pathology as well.


Author(s):  
L. Tang ◽  
G. Thomas ◽  
M. R. Khan ◽  
S. L. Duan

Cr thin films are often used as underlayers for Co alloy magnetic thin films, such as Co1, CoNi2, and CoNiCr3, for high density longitudinal magnetic recording. It is belived that the role of the Cr underlayer is to control the growth and texture of the Co alloy magnetic thin films, and, then, to increase the in plane coercivity of the films. Although many epitaxial relationship between the Cr underlayer and the magnetic films, such as ﹛1010﹜Co/ {110﹜Cr4, ﹛2110﹜Co/ ﹛001﹜Cr5, ﹛0002﹜Co/﹛110﹜Cr6, have been suggested and appear to be related to the Cr thickness, the texture of the Cr underlayer itself is still not understood very well. In this study, the texture of a 2000 Å thick Cr underlayer on Nip/Al substrate for thin films of (Co75Ni25)1-xTix dc-sputtered with - 200 V substrate bias is investigated by electron microscopy.


Author(s):  
T. Marieb ◽  
J. C. Bravman ◽  
P. Flinn ◽  
D. Gardner ◽  
M. Madden

Electromigration and stress voiding have been active areas of research in the microelectronics industry for many years. While accelerated testing of these phenomena has been performed for the last 25 years[1-2], only recently has the introduction of high voltage scanning electron microscopy (HVSEM) made possible in situ testing of realistic, passivated, full thickness samples at high resolution.With a combination of in situ HVSEM and post-testing transmission electron microscopy (TEM) , electromigration void nucleation sites in both normal polycrystalline and near-bamboo pure Al were investigated. The effect of the microstructure of the lines on the void motion was also studied.The HVSEM used was a slightly modified JEOL 1200 EX II scanning TEM with a backscatter electron detector placed above the sample[3]. To observe electromigration in situ the sample was heated and the line had current supplied to it to accelerate the voiding process. After testing lines were prepared for TEM by employing the plan-view wedge technique [6].


Author(s):  
C. Ewins ◽  
J.R. Fryer

The preparation of thin films of organic molecules is currently receiving much attention because of the need to produce good quality thin films for molecular electronics. We have produced thin films of the polycyclic aromatic, perylene C10H12 by evaporation under high vacuum onto a potassium chloride (KCl) substrate. The role of substrate temperature in determining the morphology and crystallography of the films was then investigated by transmission electron microscopy (TEM).The substrate studied was the (001) face of a freshly cleaved crystal of KCl. The temperature of the KCl was controlled by an electric heater or a cold finger. The KCl was heated to 200°C under a vacuum of 10-6 torr and allowed to cool to the desired temperature. The perylene was then evaporated over a period of one minute from a molybdenum boat at a distance of 10cm from the KCl. The perylene thin film was then backed with an amorphous layer of carbon and floated onto copper microscope grids.


Author(s):  
Alan N. Hodgson

The hermaphrodite duct of pulmonate snails connects the ovotestis to the fertilization pouch. The duct is typically divided into three zones; aproximal duct which leaves the ovotestis, the middle duct (seminal vesicle) and the distal ovotestis duct. The seminal vesicle forms the major portion of the duct and is thought to store sperm prior to copulation. In addition the duct may also play a role in sperm maturation and degredation. Although the structure of the seminal vesicle has been described for a number of snails at the light microscope level there appear to be only two descriptions of the ultrastructure of this tissue. Clearly if the role of the hermaphrodite duct in the reproductive biology of pulmonatesis to be understood, knowledge of its fine structure is required.Hermaphrodite ducts, both containing and lacking sperm, of species of the terrestrial pulmonate genera Sphincterochila, Levantina, and Helix and the marine pulmonate genus Siphonaria were prepared for transmission electron microscopy by standard techniques.


2000 ◽  
Vol 6 (S2) ◽  
pp. 998-999
Author(s):  
Barbara J. Dovey-Hartman

Microscopy plays a vital role in assessing the safety of New Chemical Entities (NCE) in the pre-clinical phase of drug development. Light microscopy (LM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) are used at the Schering-Plough Research Institute (SPRI) for evaluation of NCE. To support regulatory submissions, NCE are routinely tested in rodents in short-term studies such as one-month toxicity studies, and in longterm studies such as oncogenicity studies that may last 24 months. At the completion of a study, the animals are necropsied and the required tissues collected and stored in fixative. The tissues for LM are processed to slides and stained with Hematoxylin and Eosin (H&E). The information derived from the examination of these tissues by LM becomes an essential part of the pathology report. The LM examination of these tissues usually yields the information needed to either progress a NCE or otherwise deter or halt development.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 163
Author(s):  
Shu Wang ◽  
Yilong Liang ◽  
Hao Sun ◽  
Xin Feng ◽  
Chaowen Huang

The main objective of the present study was to understand the oxygen ingress in titanium alloys at high temperatures. Investigations reveal that the oxygen diffusion layer (ODL) caused by oxygen ingress significantly affects the mechanical properties of titanium alloys. In the present study, the high-temperature oxygen ingress behavior of TC21 alloy with a lamellar microstructure was investigated. Microstructural characterizations were analyzed through optical microscopy (OM), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). Obtained results demonstrate that oxygen-induced phase transformation not only enhances the precipitation of secondary α-phase (αs) and forms more primary α phase (αp), but also promotes the recrystallization of the ODL. It was found that as the temperature of oxygen uptake increases, the thickness of the ODL initially increases and then decreases. The maximum depth of the ODL was obtained for the oxygen uptake temperature of 960 °C. In addition, a gradient microstructure (αp + β + βtrans)/(αp + βtrans)/(αp + β) was observed in the experiment. Meanwhile, it was also found that the hardness and dislocation density in the ODL is higher than that that of the matrix.


2011 ◽  
Vol 284-286 ◽  
pp. 684-687
Author(s):  
Chang Yu Li ◽  
Li Li Liu ◽  
Shou Xin Liu

Without using any templates or surfactants, flowerlike α-nickel hydroxide (Ni(OH)2) was successfully synthesized by homogeneous precipitation method. The prepared products were characterized by X-ray powder diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and N2 adsorption-desorption. The prepared Ni(OH)2 is α-phase with specific surface area of 245.0 m2/g and shows flowerlike structure with 4-6 um in diameter.


2011 ◽  
Vol 678 ◽  
pp. 75-84 ◽  
Author(s):  
Marcello Cabibbo

Magnesium alloys containing rare earth elements are known to have high specific strength and corrosion resistance. The addition of SiC ceramic particles makes the metal matrix composite stronger with better wear and creep resistance and a still good machinability. The role of the reinforcement particles to the enhanced strength can be quantitatively evaluated using transmission electron microscopy (TEM). This paper presents a quantitative strengthening evaluation in a SiC Mg-RE composite alloy. The different contributions were determined by TEM inspections. The microstructure strengthening mechanism was studied after room temperature compression specimens. The way of combining the different contributions and the comparison to the measured yield stress, is also discussed and justified.


2007 ◽  
Vol 353-358 ◽  
pp. 2163-2166
Author(s):  
Ming Yang ◽  
Guo Qing Zhou ◽  
Jiang Guo Zhao ◽  
Zhan Jun Li

Nanocubes, monodispersed nanocrystals and nanospheres of Au have been prepared by a simple reaction between HAuCl4·4H2O, NaOH and NH2OH·HCl in the presence of gelatin. The role of gelatin and the affection of pH in producing the nanoparticles of Au were discussed. The products were characterized by X-ray powder diffraction, transmission electron microscopy, and UV-visible absorption spectroscopy. The sizes of the monodispersed nanocrystals of Au were estimated by Debye-Scherrer formula according to XRD spectrum.


Sign in / Sign up

Export Citation Format

Share Document