Measuring and Recording Systems Used in Flight Tests of Aircraft

2011 ◽  
Vol 180 ◽  
pp. 222-231 ◽  
Author(s):  
Mirosław Nowakowski

Flight tests and measurements are usually performed for newly built or modernised aircraft utilised by the Polish Armed Forces. In the course of flight tests the airborne equipment is also investigated. The main goal of the performed tests is to verify tactical performance and to identify technical parameters of aircraft and/or equipment under examination. The airborne experimental data is also applied to the aircraft flight dynamics modelling, subsequently used for the design and construction of a flight simulator. The equipment is usually arranged of the following components: ̶ sensors/measuring devices capable of converting physical parameters into optical, mechanical, or electrical signals (indicators, transmitters, sensors, transducers); ̶ conditioning systems - intermediary devices used to amplify and/or adjust any signal gained to some required value or form; ̶ recording and storing devices (data recorders, cameras, etc.); ̶ devices applied to the decoding and processing of the acquired data (decoders, computers). Some selected problems of aircraft flight tests will be discussed in the paper. A brief description of the applied experimental apparatus will be provided first. Next, the attention will be focused on the experimentally gathered data utilised in the identification of aircraft flight dynamics characteristics and on the data applied to the evaluation of selected design parameters.

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4726
Author(s):  
Jarosław Pytka ◽  
Piotr Budzyński ◽  
Paweł Tomiło ◽  
Joanna Michałowska ◽  
Ernest Gnapowski ◽  
...  

The paper presents the development of the IMUMETER sensor, designed to study the dynamics of aircraft movement, in particular, to measure the ground performance of the aircraft. A motivation of this study was to develop a sensor capable of airplane motion measurement, especially for airfield performance, takeoff and landing. The IMUMETER sensor was designed on the basis of the method of artificial neural networks. The use of a neural network is justified by the fact that the automation of the measurement of the airplane’s ground distance during landing based on acceleration data is possible thanks to the recognition of the touchdown and stopping points, using artificial intelligence. The hardware is based on a single-board computer that works with the inertial navigation platform and a satellite navigation sensor. In the development of the IMUMETER device, original software solutions were developed and tested. The paper describes the development of the Convolution Neural Network, including the learning process based on the measurement results during flight tests of the PZL 104 Wilga 35A aircraft. The ground distance of the test airplane during landing on a grass runway was calculated using the developed neural network model. Additionally included are exemplary measurements of the landing distance of the test airplane during landing on a grass runway. The results obtained in this study can be useful in the development of artificial intelligence-based sensors, especially those for the measurement and analysis of aircraft flight dynamics.


Catalysts ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 36 ◽  
Author(s):  
Bruno Conti ◽  
Barbara Bosio ◽  
Stephen John McPhail ◽  
Francesca Santoni ◽  
Davide Pumiglia ◽  
...  

Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFC) technology offers interesting opportunities in the panorama of a larger penetration of renewable and distributed power generation, namely high electrical efficiency at manageable scales for both remote and industrial applications. In order to optimize the performance and the operating conditions of such a pre-commercial technology, an effective synergy between experimentation and simulation is fundamental. For this purpose, starting from the SIMFC (SIMulation of Fuel Cells) code set-up and successfully validated for Molten Carbonate Fuel Cells, a new version of the code has been developed for IT-SOFCs. The new release of the code allows the calculation of the maps of the main electrical, chemical, and physical parameters on the cell plane of planar IT-SOFCs fed in co-flow. A semi-empirical kinetic formulation has been set-up, identifying the related parameters thanks to a devoted series of experiments, and integrated in SIMFC. Thanks to a multi-sampling innovative experimental apparatus the simultaneous measurement of temperature and gas composition on the cell plane was possible, so that a preliminary validation of the model on local values was carried out. A good agreement between experimental and simulated data was achieved in terms of cell voltages and local temperatures, but also, for the first time, in terms of local concentration on the cell plane, encouraging further developments. This numerical tool is proposed for a better interpretation of the phenomena occurring in IT-SOFCs and a consequential optimization of their performance.


1996 ◽  
Author(s):  
Henry Helmken ◽  
Peter Emmons ◽  
David Homeyer

2004 ◽  
Vol 126 (2) ◽  
pp. 149-158 ◽  
Author(s):  
Gregory L. Ohl ◽  
Jeffrey L. Stein ◽  
Gene E. Smith

As an aid to improving the dynamic response of the steam reformer, a dynamic model is developed to provide preliminary characterizations of the major constraints that limit the ability of a reformer to respond to the varying output requirements occurring in vehicular applications. This model is a first principles model that identifies important physical parameters in the steam reformer. The model is then incorporated into a design optimization process, where minimum steam reformer response time is specified as the objective function. This tool is shown to have the potential to be a powerful means of determining the values of the steam reformer design parameters that yield the fastest response time to a step input in hydrogen demand for a given set of initial conditions. A more extensive application of this methodology, yielding steam reformer design recommendations, is contained in a related publication.


Author(s):  
Michael Link ◽  
Zheng Qian

Abstract In recent years procedures for updating analytical model parameters have been developed by minimizing differences between analytical and preferably experimental modal analysis results. Provided that the initial analysis model contains parameters capable of describing possible damage these techniques could also be used for damage detection. In this case the parameters are updated using test data before and after the damage. Looking at complex structures with hundreds of parameters one generally has to measure the modal data at many locations and try to reduce the number of unknown parameters by some kind of localization technique because the measurement information is generally not sufficient to identify all the parameters equally distributed all over the structure. Another way of reducing the number of parameters shall be presented here. This method is based on the idea of measuring only a part of the structure and replacing the residual structure by dynamic boundary conditions which describe the dynamic stiffness at the interfaces between the measured main structure and the remaining unmeasured residual structure. This approach has some advantage since testing could be concentrated on critical areas where structural modifications are expected either due to damage or due to intended design changes. The dynamic boundary conditions are expressed in Craig-Bampton (CB) format by transforming the mass and stiffness matrices of the unmeasured residual structure to the interface degrees of freedom (DOF) and to the modal DOFs of the residual structure fixed at the interface. The dynamic boundary stiffness concentrates all physical parameters of the residual structure in only a few parameters which are open for updating. In this approach damage or modelling errors within the unmeasured residual structure are taken into account only in a global sense whereas the measured main structure is parametrized locally as usual by factoring mass and stiffness submatrices defining the type and the location of the physical parameters to be identified. The procedure was applied to identify the design parameters of a beam type frame structure with bolted joints using experimental modal data.


2015 ◽  
Vol 10 (7) ◽  
pp. 865-872 ◽  
Author(s):  
Michael D. Bush ◽  
David T. Archer ◽  
Robert Hogg ◽  
Paul S. Bradley

Purpose:To investigate match-to-match variability of physical and technical performances in English Premier League players and quantify the influence of positional and contextual factors.Methods:Match data (N = 451) were collected using a multicamera computerized tracking system across multiple seasons (2005–06 to 2012–13). The coefficient of variation (CV) was calculated from match to match for physical and technical performances in selected positions across different match contexts (location, standard, and result).Results:Wide midfielders demonstrated the greatest CVs for total distance (4.9% ± 5.9%) and central midfielders the smallest (3.6% ± 2.0%); nevertheless, all positions exhibited CVs <5% (P > .05, effect size [ES] 0.1–0.3). Central defenders demonstrated the greatest CVs and wide midfielders the lowest for both high-intensity running (20.2% ± 8.8% and 13.7% ± 7.7%, P < .05, ES 0.4–0.8) and sprint distance (32.3% ± 13.8% and 22.6% ± 11.2%, P < .05, ES 0.5–0.8). Technical indicators such as tackles (83.7% ± 42.3%), possessions won (47.2% ± 27.9%), and interceptions (59.1% ± 37.3%) illustrated substantial variability for attackers compared with all other positions (P < .05, ES 0.4–1.1). Central defenders demonstrated large variability for the number of times tackled per match (144.9% ± 58.3%) and passes attempted and received compared with other positions (39.2% ± 17.5% and 46.9% ± 20.2%, P < .001, ES 0.6–1.8). Contextual factors had limited impact on the variability of physical and technical parameters.Conclusions:The data demonstrate that technical parameters varied more from match to match than physical parameters. Defensive players (fullbacks and central defenders) displayed higher CVs for offensive technical variables, while attacking players (attackers and wide midfielders) exhibited higher CVs for defensive technical variables. Physical and technical performances are variable per se regardless of context.


2014 ◽  
Vol 34 ◽  
pp. 55-74 ◽  
Author(s):  
Mudassir Lone ◽  
Alastair Cooke

2020 ◽  
pp. 127-137
Author(s):  
V.V. Nizhnyk ◽  
◽  
O.F. Nikulin ◽  
S.V. Pozdeev ◽  
D.O. Dobriak ◽  
...  

This article presents the current state of affairs in cases of explosions in Ukraine and preventive measures to protect against them. The relevance of studies on the substantiation of the methodology for calculating the parameters of easily disposable structures for explosive and fire hazardous premises has been determined. The analysis of domestic and foreign regulatory documents for the design and installation of window openings in buildings for various purposes is carried out. The permissible values of the overpressure of the explosion, which does not cause significant damage to building structures and is safe for people, are considered. The subject of the study is the effect of the amount of gas on the design parameters of the research stand for the experimental evaluation of easily disposable structures. The purpose of this work is to substantiate the design and the main technical parameters of the research stand for assessing the performance of easily sisposable structures. The essence of the proposed research method is to create an excess pressure from the explosion of a mixture of propane-butane with air in the working volume and to study the effect of this excess pressure of the explosion on a prototype of an easily disposable structure. An experimental stand for studying the processes of the influence of the magnitude of the overpressure of an explosion in a confined space on the design parameters of easily disposable structures is simple in design, provides an imitation of a part of a building (structure) fragment and makes it possible to study the possibility of using certain building materials with different geometric parameters as easily disposable structures, which, in turn, allows the researcher to obtain more reliable data for analysis. The existing experimental methods for evaluating the parameters of easily disposable structures are analyzed. The dimensions of the research stand and the parameters of its enclosing structures, the critical values of the overpressure of the explosion, which the stand should create, and the minimum amount of gas, the combustion of which will provide the necessary overpressure of the explosion in the stand, are substantiated. A fundamentally new stand for the experimental evaluation of the parameters of easily disposable structures, a program and experimental research methodology have been developed.


1981 ◽  
Vol 25 (1) ◽  
pp. 488-491 ◽  
Author(s):  
Don A. Zabcik

A study was conducted to investigate the dimensional design of the personal hygiene center: the bathtub. The study determined an optimum level of four basic bathtub parameters, consisting of the bathtub basin length, the rim width, the rim height, and the backrest angle. The objective of this study was to evaluate the effects of these four physical parameters on safe bathtub usage for the general public. Sixty-four volunteer subjects participated in the study. Each subject was presented four bathtub configurations in random order. Anthropometric dimensions and subjective questionnaires were compiled and evaluated for all subjects. Known anthropometry requirements and functional abilities were combined with the experimental results to arrive at a proposed bathtub design. Analysis revealed preferred dimension for the four parameters, as a function of age, weight, and height. Bimodal preferences supported a proposed bathtub design that would accommodate various methods of bathtub ingress and egress. Finally, incorporating various human factors principles, design parameters were recommended for designing future bathtub structures.


Sign in / Sign up

Export Citation Format

Share Document