Thermomechanical Resist Removal-Cleaning System Using Cryogenic Micro-Slush Jet

2012 ◽  
Vol 187 ◽  
pp. 145-148 ◽  
Author(s):  
Jun Ishimoto ◽  
Daisuke Tan ◽  
Hiroto Ohtake ◽  
Seiji Samukawa

The fundamental characteristics of the resist removal-cleaning system using cryogenic micro-solid nitrogen spray flow were investigated by a new type of integrated measurement technique. The present system utilizes the micro-solid nitrogen (SN2) which consists of the fine solid nitrogen particle produced by the high-speed collision of subcooled liquid nitrogen and the cryogenic gaseous helium (cryogen). According to present study, the effect of ultra-high heat flux cooling on the resist removal performance due to the rapid thermal contraction of resist material is clarified in detail. Furthermore, the effect of ultrasonic atomization of micro-solid nitrogen on ultra-clean performance of the wafer is newly founded.

Author(s):  
U. Oh ◽  
Jun Ishimoto ◽  
Naoki Harada ◽  
Daisuke Tan

The fundamental characteristics of heat transfer and cooling performance of micro-solid nitrogen particulate spray impinging on a heated substrate were numerically investigated and experimentally measured by a new type of integrated computational-experimental technique. The employed CFD based on the Euler-Lagrange model is focused on the cryogenic spray behavior of atomized particulate micro-solid nitrogen and also on its ultra-high heat flux cooling characteristics. Based on the numerically predicted performance, a new type of cryogenic spray cooling technique for application to a ultra-high heat power density device was developed. In the present integrated computation, it is clarified that the cryogenic micro-solid spray cooling characteristics are affected by several factors of the heat transfer process of micro-solid spray which impinges on heated surface as well as by atomization behavior of micro-solid particles.


2016 ◽  
Vol 819 ◽  
pp. 575-579 ◽  
Author(s):  
Nandy Putra ◽  
Iwan Setyawan ◽  
Dimas Raditya

Heat pipes are widely used in electronic cooling and other applications that require efficient transport or spreading of heat from local sources of high heat flux. One factor that most affect the performance of this device is the wetting properties of the wick material, whereby a hydrophilic wick material is required to transport the liquid from the evaporator to the condenser. The performance of heat pipe will decrease when the wick surface becomes hydrophobic as indicated by changes in its contact angle (CA). This study aims to determine the effect of ambient air exposure on the wettability of wick material. Wettability for a surface by a certain liquid can be shown by measuring the contact angle of liquid droplets on the surface. In this experiment, the contact angle was captured using a high speed video camera followed by image processing and then measured using Image J software. The surface of the sample/wick is a sintered copper powder which in this study through a process of forming or compaction by various parameters such as powder particle size, compacting pressure and sintering temperature. From the results of this study was found that the longer wicks were exposed in the ambient air, the contact angle of the liquid on the wick surface will be getting increased. After 7 days were contaminated on the ambient air, then all samples have been turned into hydrophobic, CA>90°.


Author(s):  
Sujay Raphael-Mabel ◽  
Scott Huxtable ◽  
Andrew Gifford ◽  
Thomas E. Diller

A new type of heat flux sensor (HTHFS) has been designed and constructed for applications at high temperature and high heat flux. It is constructed by connecting solid metal plates to form brass/steel thermocouple junctions in a series circuit. The thermal resistance layer of the HTHFS consists of the thermocouple materials themselves, thus improving temperature limits and lowering the temperature disruption of the sensor. The sensor can even withstand considerable erosion of the surface with little effect on the operation. A new type of convection calibration apparatus was designed and built specifically to supply a large convection heat flux. The heat flux was supplied simultaneously to both a test and standard gage by using two heated jets of air that impinged perpendicularly on the surface of each gage. The sensitivity for the HTHFS was measured to have an average value of 20 μV/(W/cm2). The uncertainty in this result was determined to be ±10% over the entire range tested. The sensitivity agrees with the theoretically calculated sensitivity for the materials and geometry used. Recommendations for future improvements in the construction and use of the sensors are discussed.


2018 ◽  
Vol 140 (11) ◽  
Author(s):  
Jian-nan Chen ◽  
Rui-na Xu ◽  
Zhen Zhang ◽  
Xue Chen ◽  
Xiao-long Ouyang ◽  
...  

Enhancing spray cooling with surface structures is a common, effective approach for high heat flux thermal management to guarantee the reliability of many high-power, high-speed electronics and to improve the efficiency of new energy systems. However, the fundamental heat transfer enhancement mechanisms are not well understood especially for nanostructures. Here, we fabricated six groups of nanowire arrayed surfaces with various structures and sizes that show for the first time how these nanostructures enhance the spray cooling by improving the surface wettability and the liquid transport to quickly rewet the surface and avoid dry out. These insights into the nanostructure spray cooling heat transfer enhancement mechanisms are combined with microstructure heat transfer mechanism in integrated microstructure and nanostructure hybrid surface that further enhances the spray cooling heat transfer.


Author(s):  
Zhaoyi Dong ◽  
Xiulan Huai ◽  
G.-X. Wang

Liquid nitrogen (LN2) was widely applied in many areas, but researches on the boiling behavior under the transient high heat flux have not been reported. In this paper, the high power short pulse duration laser was used to heat the saturated LN2 rapidly, and the high-speed photography aided by the spark light system was employed to take series of photos which displayed the process of LN2’s boiling behavior under such conditions. At the same time, a special temperature measuring system was applied to record the temperature variation of the heating surface. The experimental result disclosed that at the earlier stage of laser heating, an explosive boiling would happen within LN2. After the newly-defined changeover time, the conventional boiling behavior would follow. Therefore the changeover time became an important index to distinguish these two kinds of boiling behaviors. By analyzing the temperature variation of the heating surface, it is found that the latent heat released by the crack of bubbles in explosive boiling is an important factor that greatly influences the boiling heat transfer mechanism.


Author(s):  
Paul J. Laca ◽  
Richard A. Wirtz

Flow boiling experiments with sub-cooled Isopentane and n-Pentane at 3.0bar pressure assess the utility of compressed copper- and steel-filament screen laminate surface coatings as high performance boiling surfaces. High-speed video show that at high heat flux ebullition is unsteady. Isopentane and n-Pentane are found to produce nearly identical boiling characteristic curves. At the same applied heat flux, the superheat of copper filament coatings are much smaller than the steel filament coating superheats.


Author(s):  
D. V. Zaitsev ◽  
O. A. Kabov

The paper focuses upon shear-driven liquid film evaporative cooling of high-speed computer chips. Thin liquid films may provide very high heat transfer rates, however development of cooling system based on thin film technology requires significant advances in fundamental research. The paper presents new experimental data on flow and breakdown of a liquid film driven by the action of a forced gas flow in a horizontal minichannel (2 mm high), heated from a 22×6.55 mm heater. A map of isothermal flow regimes is plotted and the lengths of smooth region and region of 2D/3D wave occurrence are measured. The scenario of liquid film breakdown under heating is found to differ widely for different flow regimes. It is revealed that the critical heat flux at which film breakdown occurs for a shear-driven liquid film can be several times higher than that for a gravitationally-driven liquid film. This fact makes shear-driven liquid films very promising in high heat flux cooling applications.


Author(s):  
Takahito Saiki ◽  
Tomohiko Osawa ◽  
Ichiro Ueno ◽  
Chungpyo Hong

A series of experiments on subcooled pool boiling on a plate and on a thin wire are carried out. We focus on the condensation and collapse processes of vapor bubbles generated on the heated surface. We find the different patterns of the vapor bubble behaviors resulting in the emission of the microbubbles around the heated plate and the thin wire by employing high-speed observation with frame rate up to 150,000 frame per second (fps). From the experimental results, we provide a physical explanation on the correlation between the behavior of the vapor bubble at a high heat flux and the heat transfer characteristics. We propose this simple core-periphery model as a qualitative model for understanding the generation of the MEB.


2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Xuefei Han ◽  
Andrei Fedorov ◽  
Yogendra Joshi

In the first part of this paper, a review of fundamental experimental studies on flow boiling in plain and surface enhanced microgaps is presented. In the second part, complimentary to the literature review, new results of subcooled flow boiling of water through a micropin-fin array heat sink with outlet pressure below atmospheric are presented. A 200 μm high microgap device design was tested, with a longitudinal pin pitch of 225 μm, a transverse pitch of 135 μm, and a diameter of 90 μm, respectively. Tested mass fluxes ranged from 1351 to 1784  kg/m2s, and effective heat flux ranged from 198 to 444 W/cm2 based on the footprint surface area. The inlet temperature varied from 6 to 12 °C, and outlet pressure ranged from 24 to 36 kPa. The two-phase heat transfer coefficient showed a decreasing trend with increasing heat flux. High-speed visualizations of flow patterns revealed a triangular wake after bubble nucleation. Flow oscillations were seen and discussed.


Sign in / Sign up

Export Citation Format

Share Document