Ultra-Fast In-Line Inspection for 3D SIC TSV Line - Bonding & Thinning

2012 ◽  
Vol 187 ◽  
pp. 259-264
Author(s):  
Pierre Yves Guittet ◽  
Lars Markwort ◽  
Greg Savage ◽  
Sandip Halder ◽  
Anne Jourdain

The number of consumer products requiring 3D stacked IC (3D SIC) is growing, and volume output is expected to start between 2011 and 2013. R&D centers and production sites are addressing the remaining obstacles to production for these new technologies. To enable fast production ramp, there is urgency to get enablers in place, including advanced, dedicated process control methods. Using an innovative high throughput inspection technology, we show ways to control future 3D SIC production lines, getting data from 100% of the wafers and providing defect classification for yield management.


2006 ◽  
Vol 519-521 ◽  
pp. 795-802 ◽  
Author(s):  
Dominique Daniel ◽  
Gilles Guiglionda ◽  
Pierre Litalien ◽  
Ravi Shahani

Cost-efficient designs of aluminum autobody structures consist mainly of stampings using conventional technology. Progress in metallurgy and forming processes has enabled aluminum body panels to achieve significant market share, particularly for hoods. Fast bake hardening alloys with better hemming performance were developed for improved outer panel sheet products. Specific guidelines for handling and press working were established to form aluminum panels using similar schedules and production lines as steel parts. Stamping productivity was improved by optimization of the trimming process to reduce sliver/particle generation and resulting end-of-line manual rework. Both hemming formability and trimming quality not only depend on tooling setup but also on microstructural features, which govern intrinsic alloy ductility. Targets for the next high volume aluminum car body applications, such as roof panels and doors, require higher strength and/or better formability. The challenges of complex stampings can be met with optimized alloys and lubricants, with improved numerical simulation to fine-tune stamping process parameters, and with the introduction of new technologies. Warm forming was examined as a potential breakthrough technology for high volume stamping of complex geometries.



Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 575
Author(s):  
Jelena Ochs ◽  
Ferdinand Biermann ◽  
Tobias Piotrowski ◽  
Frederik Erkens ◽  
Bastian Nießing ◽  
...  

Laboratory automation is a key driver in biotechnology and an enabler for powerful new technologies and applications. In particular, in the field of personalized therapies, automation in research and production is a prerequisite for achieving cost efficiency and broad availability of tailored treatments. For this reason, we present the StemCellDiscovery, a fully automated robotic laboratory for the cultivation of human mesenchymal stem cells (hMSCs) in small scale and in parallel. While the system can handle different kinds of adherent cells, here, we focus on the cultivation of adipose-derived hMSCs. The StemCellDiscovery provides an in-line visual quality control for automated confluence estimation, which is realized by combining high-speed microscopy with deep learning-based image processing. We demonstrate the feasibility of the algorithm to detect hMSCs in culture at different densities and calculate confluences based on the resulting image. Furthermore, we show that the StemCellDiscovery is capable of expanding adipose-derived hMSCs in a fully automated manner using the confluence estimation algorithm. In order to estimate the system capacity under high-throughput conditions, we modeled the production environment in a simulation software. The simulations of the production process indicate that the robotic laboratory is capable of handling more than 95 cell culture plates per day.



2012 ◽  
Vol 75 (8) ◽  
pp. 1411-1417 ◽  
Author(s):  
ANTÓNIO LOURENÇO ◽  
FRANCISCO REGO ◽  
LUISA BRITO ◽  
JOSEPH F. FRANK

The contamination of ready-to-eat products with Listeria monocytogenes has been related to the presence of biofilms in production lines, as biofilms protect cells from chemical sanitizers. The ability of L. monocytogenes to produce biofilms is often evaluated using in vitro methodologies. This work aims to compare the most frequently used methodologies, including high-throughput screening methods based on microplates (crystal violet and the Calgary Biofilm Device) and methods based on CFU enumeration and microscopy after growth on stainless steel. Thirty isolates with diverse origins and genetic characteristics were evaluated. No (or low) correlations between methods were observed. The only significant correlation was found between the methods using stainless steel. No statistically significant correlation (P > 0.05) was detected among genetic lineage, serovar, and biofilm-forming ability. Because results indicate that biofilm formation is influenced by the surface material, the extrapolation of results from high-throughput methods using microplates to more industrially relevant surfaces should be undertaken with caution.



Author(s):  
Francisco Rodríguez-Díaz ◽  
Natalia Padilla Zea ◽  
Marcelino Cabrera

Many studies defend the use of New Technologies in classrooms. It has been substantially proven that computer operation can be learnt at an early age, and that the use of new technologies can improve a child’s learning process. However, the main problem for the teacher continues to be that he/she cannot pay attention to all children at the same time. Sometimes it is necessary to decide which child must be first attended to. It is in this context that we believe our system has the ability to greatly help teachers: we have developed a learning process control system that allows teachers to determine which students have problems, how many times a child has failed, which activities they are working on and other such useful information, in order to decide how to distribute his/her time. Furthermore, bearing in mind the attention required by kindergarten students, we propose the provision of mobile devices (PDA - Personal Digital Assistant) for teachers, permitting free movement in the classroom and allowing the teacher to continue to help children while information about other students is being received. Therefore if a new problem arises the teacher is immediately notified and can act accordingly.





2020 ◽  
Vol 12 (6) ◽  
pp. 998 ◽  
Author(s):  
GyuJin Jang ◽  
Jaeyoung Kim ◽  
Ju-Kyung Yu ◽  
Hak-Jin Kim ◽  
Yoonha Kim ◽  
...  

Utilization of remote sensing is a new wave of modern agriculture that accelerates plant breeding and research, and the performance of farming practices and farm management. High-throughput phenotyping is a key advanced agricultural technology and has been rapidly adopted in plant research. However, technology adoption is not easy due to cost limitations in academia. This article reviews various commercial unmanned aerial vehicle (UAV) platforms as a high-throughput phenotyping technology for plant breeding. It compares known commercial UAV platforms that are cost-effective and manageable in field settings and demonstrates a general workflow for high-throughput phenotyping, including data analysis. The authors expect this article to create opportunities for academics to access new technologies and utilize the information for their research and breeding programs in more workable ways.



Micromachines ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 297 ◽  
Author(s):  
Kena Song ◽  
Guoqiang Li ◽  
Xiangyang Zu ◽  
Zhe Du ◽  
Liyu Liu ◽  
...  

Microfluidic systems have been widely explored based on microfluidic technology, and it has been widely used for biomedical screening. The key parts are the fabrication of the base scaffold, the construction of the matrix environment in the 3D system, and the application mechanism. In recent years, a variety of new materials have emerged, meanwhile, some new technologies have been developed. In this review, we highlight the properties of high throughput and the biomedical application of the microfluidic chip and focus on the recent progress of the fabrication and application mechanism. The emergence of various biocompatible materials has provided more available raw materials for microfluidic chips. The material is not confined to polydimethylsiloxane (PDMS) and the extracellular microenvironment is not limited by a natural matrix. The mechanism is also developed in diverse ways, including its special physical structure and external field effects, such as dielectrophoresis, magnetophoresis, and acoustophoresis. Furthermore, the cell/organ-based microfluidic system provides a new platform for drug screening due to imitating the anatomic and physiologic properties in vivo. Although microfluidic technology is currently mostly in the laboratory stage, it has great potential for commercial applications in the future.



Sign in / Sign up

Export Citation Format

Share Document