Experimental Study of Bimaterial Shear Strength and Strain Concentrations by Iosipescu Based Test Using Digital Image Correlation System

2012 ◽  
Vol 188 ◽  
pp. 226-231
Author(s):  
Tomasz Sadowski ◽  
Marcin Kneć

Adhesive bonding of two different materials appears in many modern engineering applications, e.g.: airplanes, boats, cars etc. In many practical problems the adhesive bonding is subjected to shear loading. Therefore this is important to investigate the whole deformation process of the considered type of joints under monotonic loading, to get information about the shear strength and strain concentrations. Such concentrations lead to microdefects initiation and their further coalescence to create a main crack. The unstable crack propagation leads to final failure of the adhesive joint. The Digital Image Correlation (DIC) System - ARAMIS allows for constant monitoring of the deformation state up to the final failure. The tests were performed for bi-material specimens made of adhesively bonded PMMA and aluminum strips (Fig.1) and for pure PMMA and pure aluminum specimens. Additionally, two strain gauges on each homogeneous specimen and four on the bimaterial ones are used for strains estimations. The four point bending Iosipescu tests were performed using MTS machine with constant speed. In the first method (DIC) the ARAMIS system recorded a displacement distribution in samples with frequency 1Hz. In the second method the strains were recorded by the strain gauges - using analog output channels of the HOTTINGER data Acquisition System - MGCPlus, the current value of the load using analog output channel of the MTS machine was recorded too. The load-displacement curves were obtained for the whole deformation process and the shear strength of the joints was estimated. The energy absorption of the joints was calculated.

2019 ◽  
Vol 2019 (3) ◽  
pp. 57-65
Author(s):  
Maciej Karny

Abstract This article presents the results of the application of Digital Image Correlation (DIC) to measurements of in-plane shear modulus and strength of three different carbon fiber reinforced laminates. Three different approaches to shear strain calculations via DIC are evaluated and compared with standard strain gage measurements. Calculation of shear strain based on averaging DIC strain values of strain gages area in most cases yielded results closest to strain gages, while measurements based on single point strain measuring differed the most from strain gages. These results are attributed to shear strain distribution in the center area of the specimen. Thermoplastic matrix fabric reinforced composite had the lowest shear strength at 5% of shear strain, but the highest ultimate shear strength and strain at failure. Of thermosetting materials, laminate reinforced with unidirectional carbon fiber had shear modulus about 10% lower, than fabric reinforced laminate, but higher ultimate strength and strain at failure. This behavior is attributed to the presence of weaves in fabric reinforcing the laminate, causing shear stiffening of the material, but lowering its ability to deform under shear loading.


2019 ◽  
Vol 97 ◽  
pp. 03008 ◽  
Author(s):  
Dorota Marcinczak ◽  
Tomasz Trapko

The article presents tests of a reinforced concrete beam strengthened in a shear with PBO-FRCM composite materials. Measurement of the deformation of the composite was carried out using two methods - with strain gauges and the optical DIC method (Digital Image Correlation). The DIC method consists in taking a series of photographs of the tested object before and during loading. The surface of the tested element must have randomly spaced spots that are applied to the object before measurement. During the study, the cameras monitor the shifting of spots against each other, which in comparison to the reference image before loading gives information about strains and stresses of the tested element. Measurements of deformation of composite materials using strain gauges are difficult to clearly analyse, because the strain gauge is in a specific, limited place, which does not correspond to the work of the entire composite. In addition, the strain gauge tends to break at the place of crack. The article discusses this problem by presenting the results of deformation of PBO-FRCM composite meshes measured in two mentioned ways, their comparison and discussion of results.


Proceedings ◽  
2018 ◽  
Vol 2 (8) ◽  
pp. 504
Author(s):  
Jie Zhang ◽  
Cedric Kiekens ◽  
Stijn Hertelé ◽  
Wim De Waele

The trajectory of fatigue crack growth is influenced by many parameters and can be irregular due to changes in stress distribution or in material properties as the crack progresses. Images of the surface of a standardized test specimen can be used to visualize the crack trajectory in a non-destructive way. Accurately identifying the location of the crack tip, however, is challenging and requires devoted image postprocessing. In this respect, digital image correlation allows to obtain full field displacement and strain fields by analysing changes of digital images of the same sample at different stages of loading. This information can be used for the purpose of crack tip tracking. This paper presents a combined experimental-numerical study of detection and prediction of fatigue crack propagation path by means of digital image correlation (DIC) and the extended finite element method (X-FEM). Experimental validation and analyses are carried out on a modified C(T) specimen in which a curved crack trajectory is triggered by introducing mixed-mode (tension + shear) loading. The developed tools are used for validating an automated framework for crack propagation prediction.


BUILDER ◽  
2019 ◽  
Vol 259 (2) ◽  
pp. 66-68
Author(s):  
Dorota Marcińczak

DIC (DIGITAL IMAGE CORRELATION) METHOD IN THE RESEARCH OF RC BEAMS STRENGTHENED WITH PBOFRCM MATERIALS. The article presents tests of a reinforced concrete beam strengthened in a shear with PBO-FRCM composite materials. Measurement of the deformation of the composite was carried out using two methods - with strain gauges and the optical DIC method (Digital Image Correlation). The DIC method consists in taking a series of photographs of the tested object before and during loading. The surface of the tested element must have randomly spaced spots that are applied to the object before measurement. During the study, the cameras monitor the shifting of spots against each other, which in comparison to the reference image before loading gives information about strains and stresses of the tested element. Measurements of deformation of composite materials using strain gauges are difficult to clearly analyze, because the strain gauge is in a specific, limited place, which does not correspond to the work of the entire composite. In addition, the strain gauge tends to break at the place of crack. The article discusses this problem by presenting the results of deformation of PBO-FRCM composite meshes measured in two mentioned ways, their comparison and discussion of results.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
M. Arza-García ◽  
C. Núñez-Temes ◽  
J. A. Lorenzana ◽  
J. Ortiz-Sanz ◽  
A. Castro ◽  
...  

AbstractDue to their cost, high-end commercial 3D-DIC (digital image correlation) systems are still inaccessible for many laboratories or small factories interested in lab testing materials. These professional systems can provide reliable and rapid full-field measurements that are essential in some laboratory tests with high-strain rate events or high dynamic loading. However, in many stress-controlled experiments, such as the Brazilian tensile strength (BTS) test of compacted soils, samples are usually large and fail within a timeframe of several minutes. In those cases, alternative low-cost methods could be successfully used instead of commercial systems. This paper proposes a methodology to apply 2D-DIC techniques using consumer-grade cameras and the open-source image processing software DICe (Sandia National Lab) for monitoring the standardized BTS test. Unlike most previous studies that theoretically estimate systematic errors or use local measures from strain gauges for accuracy assessment, we propose a contrast methodology with independent full-field measures. The displacement fields obtained with the low-cost system are benchmarked with the professional stereo-DIC system Aramis-3D (GOM GmbH) in four BTS experiments using compacted soil specimens. Both approaches proved to be valid tools for obtaining full-field measurements and showing the sequence of crack initiation, propagation and termination in the BTS, constituting reliable alternatives to traditional strain gauges. Mean deviations obtained between the low-cost 2D-DIC approach and Aramis-3D in measuring in-plane components were 0.08 mm in the perpendicular direction of loading (ΔX) and 0.06 mm in the loading direction (ΔY). The proposed low-cost approach implies considerable savings compared to commercial systems.


2018 ◽  
Vol 183 ◽  
pp. 02045 ◽  
Author(s):  
Tomáš Fíla ◽  
Petr Zlámal ◽  
Jan Falta ◽  
Tomáš Doktor ◽  
Petr Koudelka ◽  
...  

In this paper, a split Hopkinson pressure bar (SHPB) was used for impact loading of an auxetic lattice (structure with negative Poisson’s ratio) at a given strain-rate. High strength aluminum and polymethyl methacrylate bars instrumented with foil strain-gauges were used for compression of an additively manufactured missing-rib auxetic lattice. All experiments were observed using a high-speed camera with frame-rate set to approx. 135.000 fps. High-speed images were synchronized with the strain-gauge records. Dynamic equilibrium in the specimen was analyzed and optimized pulse-shaping was introduced in the selected experiments. Longitudinal and lateral in-plane displacements and strains were evaluated using digital image correlation (DIC) technique. DIC results were compared with results obtained from strain-gauges and were found to be in good agreement. Using DIC, it was possible to analyze in-plane strain distribution in the specimens and to evaluate strain dependent Poisson’s ratio of the auxetic structure.


Author(s):  
William Siefert ◽  
James Rule ◽  
Boian Alexandrov ◽  
Mike Buehner ◽  
Jorge A. Penso

Abstract Qualification for weld strength is typically accomplished using cross weld tensile testing. This style of testing only gives the global behavior of the welded joint and limited materials properties, such as elongation at failure and tensile strength of the material where final failure occurs. Qualification for welded structures usually requires the weldment fails in the base metal. Final failure in cross weld tensile tests in the base metal does not provide information about the actual weld metal and heat affected zone properties. There may be weaker points in the microstructure that cannot be identified in a global cross weld tensile test due to being constrained by surrounding microstructures. Additionally, the traditional cross weld tensile test does not quantify how strain accumulates and transfers in the microstructure at various loads. Using Digital Image Correlation (DIC) in combination with tensile testing, local strain of the various microstructures present across the weld was obtained for ferritic to austenitic dissimilar metal welds (DMW), as well as for a typical “matching” ferritic steel filler metal weld with a higher tensile strength than the base metal. This test also showed where and how strain accumulated and transferred during tensile loading of various welded microstructures. Local yield stresses of each region were also obtained. Obtaining such local properties provides insight into design and service limits of welded components in service.


2017 ◽  
Vol 742 ◽  
pp. 660-665 ◽  
Author(s):  
Thomas Rief ◽  
Joachim Hausmann ◽  
Nicole Motsch

In scope of the investigation of residual stresses the hole drilling method is an accepted method. The method is though not applicable for materials with high anisotropic behavior. Therefore a new algorithm is derived which allows the calculation of residual stresses in laminates made of unidirectional layers. Also the strain gauges deliver only strains on the areas where the strain gauges are applied. With the use of a high resolution imaging system and digital image correlation this area and the informational output can be widely improved. First, the derivation of the residual stress analysis algorithm is presented. For this an adequate finite element model, which is modeling the cooldown process as well as the drilling process, is set up and the surface strains are extracted. Based on this information an algorithm is derived and presented. Within the derivation a change of the layup, a possible change of the cooldown process and a variation of the drilling steps can be investigated. In consequence the input parameters of the algorithm can vary dependent on these factors. Second, the new optical testing setup with refinements to be able to measure the small deformations within micro-strains on the specimen’s surface is prepared and the concept presented. To solve the problem of casting shadows of the drill a special camera setup is being used.


2021 ◽  
pp. 147592172110060
Author(s):  
Hugo C Biscaia ◽  
João Canejo ◽  
Shishun Zhang ◽  
Raquel Almeida

The use of optic measurements such as digital image correlation to take strain measurements of fibre-reinforced polymers bonded to a substrate has been on the increase recently. This technique has proven to be useful to fully characterize the bond behaviour between two materials. Although modern digital cameras can take high-definition photos, this task is far from simple due to the tiny displacements that need to be measured. Consequently, digital image correlation measurements lead to relative errors that, at an initial stage of the debonding process, are higher than those calculated close to the debonding of the fibre-reinforced polymer from the substrate. This study aims to evaluate and analyse the use of the digital image correlation technique on the bond between carbon fibre-reinforced polymer laminates and timber when subjected to a pull-out load consistent with fracture Mode II. To allow the quantification of the relative errors obtained from the digital image correlation measurements during the full debonding process, several strain gauges were used to measure the strains in the carbon fibre-reinforced polymer composite. The accuracy of the digital image correlation measurements is analysed by comparing it with those obtained from the strain gauges, which is a very well-established measuring technique. Another contribution of this study is to check the versatility of the digital image correlation measurements on a broader range of situations. To that end, several timber prisms were bonded with seven different bonding techniques with and without the installation of a mechanical anchorage at the carbon fibre-reinforced polymer unpulled end. The results showed that the digital image correlation technique was able to track the slips calculated from the strain gauge measurements until the debonding load, but after that, some difficulties to measure the displacements of the anchored carbon fibre-reinforced polymer-to-timber joints were detected. The digital image correlation technique also over predicted bond stresses when compared with those taken from the strain gauges, which led to bond–slip relationships with higher bond stresses.


Sign in / Sign up

Export Citation Format

Share Document