Influence of Overheating Degree on Material Reliability of A390.0 Alloy

2012 ◽  
Vol 191 ◽  
pp. 23-28 ◽  
Author(s):  
Jaroslaw Piątkowski

The object of the studies was A390.0 alloy (AlSi17Cu5Mg), similar to A3XX.X series, gravity cast into sand and metal moulds. This alloy is mainly used for cast pistons operating in I.C. engines, for cylinder blocks and housings of compressors, and for pumps and brakes. The A390.0 alloy was poured at temperatures 880 and 980°C, holding the melt for 30 minutes and casting from the temperature of 780°C. The assessment of the impact of the degree of overheating was to analysis the tensile strength. Studies were carried out on a normal-running fatigue testing machine, which was the mechanically driven resonant pulsator. For the needs of quantitative reliability evaluation and the time-to-failure evaluation, the procedures used in survival analysis, adapted to the analysis of failure-free operation with two-parametric Weibull distributions, were applied. Having determined the boundary value σ0 for Weibull distribution, the value of „m” modulus was computed along with other coefficients of material reliability, proposed formerly by the authors. Basing on the obtained results, a model of Weibull distribution function was developed for the tensile strength with respective graphic interpretation.

2021 ◽  
Vol 10 (1) ◽  
pp. 1-7
Author(s):  
Rohit Kumar ◽  
Ramratan . ◽  
Anupam Kumar ◽  
Rajinder Singh Smagh

Elephant dung is an excellent source of cellulosic fiber that is a basic requirement for paper making. But they contributed to very small percentage production of elephant dung. So, researchers are trying to find a new area of utilization of elephant dung fiber pulp as in reinforcement’s polymer composite. In this experiment element dung fiber pulp in the natural fiber component chemically treated with alkaline and soda AQ solution in this study, it has been aimed to use elephant dung fiber pulp in composite material and to study mechanical properties of the produced material. The produced composite samples were then characterized using tensile test, Izod impact test, thickness test. The fracture surface of the polymer composite sample was also inspected with the help of SEM. The content of elephant dung fiber pulp is varied (35%, 45%, 55%) weight percentage whereas the epoxy resin is varied (50%, 40%, 30%) percentage is kept constant 15% in hardener. The entire sample has been tested in a universal testing machine as per ASTM standard for tensile strength and impact strength. It is observed that composite with 35% fiber pulp is having the highest tensile strength of 4mm 6.445 Mpa and 8mm 11.80 Mpa. The impact strength of composite with 35% fiber pulp washes highest than 45% to 55% dung fiber pulp. This produces composite sheet will be used for the surfboards, sporting goods, building panel this not only reduces the cost but also save from environmental pollution.


2020 ◽  
pp. 002199832092314
Author(s):  
Adefemi Adeodu ◽  
Lateef Mudashiru ◽  
Ilesanmi Daniyan ◽  
Abdulmalik Awodoyin

Mechanical properties (impact, hardness and tensile strength) characterization of samples containing homogenous mixtures of Al 6063 matrix and varying amount of silver nanoparticles mixed with calcium carbonate at 2, 4, 6% weight fractions, respectively, produced by method of stir casting were carried out. Measurement of impact energy, hardness and tensile strength of the produced samples at 24℃ (ambient) temperature was done by Charpy impact, Brinell hardness and universal tensile testing machine in accordance to ASTM E23, E384 and E8/E8M-13M, respectively. The magnitude of impact and hardness increased evidently with increase in percentage weight fraction of the AgNPs. The refined samples were examined under an optical microscope. The fracture surfaces of the impact test samples were further examined by scanning electron microscopy. There is an increase in tensile strength, elongation and modulus of elasticity of Al-AgNP composites compared to as-cast aluminium alloy. The use of stir-casting technique influences the homogeneity and microstructure of the composites positively. It is concluded that Al-silver nanocomposites possess better qualities in hardness and strength and can replace conventional aluminium alloy in terms of performance and longer life in industrial application.


2012 ◽  
Vol 06 (04) ◽  
pp. 402-407
Author(s):  
Boniek Castillo Dutra Borges ◽  
Eduardo José Souza-Júnior ◽  
Anderson Catelan ◽  
Luís Alexandre Maffei Sartini Paulillo ◽  
Flávio Henrique Baggio Aguiar

ABSTRACTObjective: This study aimed to evaluate the impact of extended photoactivation time on ultimate tensile strength (UTS), water sorption (WS) and solubility (WSB) of resin-based materials used as fissure-sealantsMethods: A fissure-sealant (Fluroshield) and a flowable composite (Permaflo) polymerized for 20 and 60 seconds were tested. For UTS, 20 hourglass shaped samples were prepared representing two materials and two photoactivation time (n=5). After 24-h dry-storage, samples were tested in tension using a universal testing machine at a cross-head speed of 0.5 mm/min (UTS was calculated in MPa). For WS and WSB, 20 disks with 5 mm diameter and 1 mm height (n=5) were prepared and volumes were calculated (mm3). They were transferred to desiccators until a constant mass was obtained (m1) and were subsequently immersed in distilled water until no alteration in mass was detected (m2). Samples were reconditioned to constant mass in desiccators (m3). WS and WSB were determined using the equations m2-m3/V and m1-m3/V, respectively. Data were subjected to twoway ANOVA and Tukey’s HSD test (P<.05).Results: There was no significant difference between materials or photoactivation times for the UTS and WS. Permaflo presented lower but negative WSB compared to Fluroshield.Conclusions: Extended photoactivation time did not improve the physical properties tested. Fluroshield presented physical properties that were similar to or better than Permaflo. (Eur J Dent 2012;6:402-407)


2010 ◽  
Vol 148-149 ◽  
pp. 1394-1399
Author(s):  
Xiao Dong Chen ◽  
Tie Jun Ma ◽  
Hai Zhang ◽  
Rong Sheng Chen

Poly(ε-caprolactone) (PCL) glycol based casting polyurethane elastomers (CPUE) filled with nano-SiO2 particles within different surface properties were synthesized by mean of in-situ polymerization. The macro-static/dynamic mechanical properties and micro-dispersed state were characterized by an electronmechanical universal testing machine, a durometer, a rubber resilience experimental machine, a dynamic-mechanical analyzer (DMA) and a scanning electron microscope (SEM). The tensile modulus at 100% and 300%, elongation at break, tensile strength and tear strength of PCL urethane nanocomposites increased substantially in the presence of a certain amount of nano-SiO2 compared with their pristine state. Furthermore, the tensile strength and tear strength at 100 of the PCL CPUE with 5% nano-SiO2 pretreated by γ-glycidochloropropyl methyl trimethoxy silane (SI-CA) were 1.50 and 1.94 times than those of the pure PCL CPUE, respectively. The addition of the nano-SiO2 had little effect on the hardness, but the impact resilience decreased slightly. DMA analyses showed that the loss factor peaks of two nano-SiO2 polyurethane composites were higher obviously than the pure PCL CPUE and the glass transition temperature (Tg)of the two nano-SiO2 polyurethane composites increased to higher temperature region. SEM fractographs showed that the surface treatment by the optimum silane coupling agent influenced the dispersibility of nano-SiO2 in the PCL CPUE distinctly. The agglomerating phenomenon, and even some nano-agglomerates with more than 1 μm diameter can be observed in the PCL CPUE with 5% untreated nano-SiO2, but the nano-SiO2 pretreated by SI-CA was dispersed in the PCL CPUE in nano-scale.


2020 ◽  
Vol 9 (2) ◽  
pp. 8-15
Author(s):  
Anupam Kumar ◽  
Ramratan . ◽  
Rohit Kumar

The aim of this study is utilized agricultural waste which may be profitable, pollution free and economically viable for the farmer and industries. In this experiment short flax fiber pulp is the natural fiber component chemically treated with alkaline solutions. Six specimens will be prepared in different volume percentage of flax fiber pulp and epoxy resin in order to get more accurate results. In this study it has been aimed to use flax fibres in composite materials and to study the mechanical properties of the produced samples. The mechanical tests results (thickness test, Tensile strength and impact strength tests) and SEM micrographs indicated flax fibres as an alternative natural fibre source for developing reinforced composites for various industries. The content of short flax fiber pulp is varied (35%, 45%, 55%) weight percentage whereas the epoxy resin is varied (50%, 40%, 30%) percentage is kept constant 15% in hardener. All the sample have been tested in universal testing machine as per ASTM standard for tensile strength and impact strength it is observed that composite with 35% flax fiber pulp is having highest tensile strength of 4 mm (4.57 Mpa) and 8 mm (6.04 Mpa). The impact strength of composite with 35% flax fiber pulp was highest than 45% to 55% flax fiber pulp.


The objective of this research to study the impact of v-groove shape on Metal Inert Gas welding procedure of 6mm thickness A6061 aluminum combination and 304 Stainless steel in overlap configuration with welding parameters as; voltage, wire feed rate and shielding gas are 17 volts, 2m/min and 15L/min respectively, the experiment was performed in which the aluminum is upper. 1-mm diameter of ER4042 filler material and pure argon gas as shielded gas. V-groove shapes in steel samples were made with angle 450 . The experiment conducted using SYNERGIC.PRO2 450-4 machine. Tensile test was carried out for each welded sample Universal Testing Machine of MIG welding processes with and without v-grove in steel side. Tensile strengths of welded test samples vary from 15.8 N/mm2 to 26.24 N/mm2 contingents on the welding conditions. The results indicated that v-groove specimens have a maximum strength of tensile strength of 26,24 N / mm2 compared to v-groove samples. It shows the ability to mount inert gas / brazing process aluminum to steel by means of a reversed groove angle and to maximize welding parameters. In conjunction with the half-V-shaped groove the smallest temperature gradient along the steel interface was noted to the smallest difference from top to bottom with IMC thicken values. Tensile test results showed that, owing to its outstanding diffusion behavior of filled filler material, the maximum bonding interface and the correct IMC interface distribution on the steel surface.


2012 ◽  
Vol 217-219 ◽  
pp. 314-317
Author(s):  
Xiao Guang Li ◽  
Ping Zhao

The effects of contact pressure and sliding velocity and different environment conditions on the frictional coefficient of friction plate on MW wind power were studied by fatigue testing machine. The results show that the coefficient of static friction and difference between static and dynamic reduced with the increase of sliding speed, and reduced first and then increased and then reduced with the increase of contact pressure, and the change of dynamic friction coefficient was relatively flat with velocity and pressure under dry friction. The impact of water on the triological performance was the large, followed by oil when considering environment factors. Water and pressure and oil were the main influencing factors in considering all factors comprehensively.


2015 ◽  
Vol 5 (1) ◽  
pp. 137
Author(s):  
Kristin B. Labasan ◽  
Aldrine Jay G. Espinosa ◽  
Rebecca C. Nueva Espana

<p>Fiber-reinforced polymer composites are composed of a polymer matrix (PE-PS) combined with a fiber (bamboo fibers) to provide conspicuous reinforcement. In light of recycling plastic and natural fibers, the research aim to fabricate and characterize bamboo fiber-reinforced polyethylene-polystyrene composites using glycerol as plasticizer. Specifically, the study investigated the effect on the physical and mechanical properties and water absorption of the composites by varying the following parameters: substitution of glycerol instead of the usual cooking oil in fabrication of DRM, and bamboo fiber loading. Using 1:3 PE-PS ratio, glycerol incorporation was done in DRM by melting together plastic and styrofoam wastes using a densifying machine at 150˚C. DRM samples with 70% (w/w) glycerol incorporation were then compared to the original DRM samples with 70% (w/w) cooking oil. The modified DRM were then loaded with 1, 2 and 3% bamboo fiber-reinforcement using a two-roll mill at 200˚C and compression molding machine at 200˚C and 50 kg/cm2 for 5 mins in the aluminium mold. The composites were characterized by Universal Testing Machine (tensile strength) following the ASTM standard D638. In addition, water absorption of the fabricated composites was tested using the standard method specified by ASTM D570.The bamboo fiber-reinforced polyethylene-polystyrene composites at 1:3 PE: PS ratio rendered better tensile strength and less water absorbed using 70% (w/w) glycerol as plasticizer and at 1% bamboo fiber loading. For future studies, it is recommended to study the impact of different parameters (glycerol percentage, time, temperature, pressure, fiber type and dimensions, fiber extraction, etc.) in the fabrication of the fiber-reinforced recycled plastic composites. Other characterizations of the fabricated plastic composite including thermal properties, leaching and biodegradation experiments and compressive and flexural strengths can also be done.</p><p>Keywords: Fiber-reinforced polymer, plasticizer, composites.</p>


2020 ◽  
Vol 36 ◽  
pp. 114-125
Author(s):  
Kanwal Jit Singh ◽  
Rohit Kumar ◽  
Ramratan

The wheat husk pulp epoxy resin composites were prepared by compression Molding Method and their physical and Mechanical Properties were studied by universal testing Machine. The composites were tested by tensile strength testing and impact strength tester. The content of Wheat husk pulp is varied (35%, 45%, 55%) weight percentage whereas the epoxy resin is varied (50%, 40%, 30%) percentage is kept constant 15% in hardener. Composites have been fabricated using hand layup technique using a suitable mold developed in industry. All the sample have been tested in Universal testing machine as per ASTM standard for tensile strength and impact strength it is observed that composite with 35% wheat husk pulp is having highest tensile strength of 4mm (4.29MPa) and 8mm (6.31Mpa). The impact strength of Composite with 35% wheat husk pulp was highest than 35%to 45% wheat husk pulp.


2008 ◽  
Vol 75 (1) ◽  
Author(s):  
J. H. Kim ◽  
N. Brandenburg ◽  
W. McDonough ◽  
W. Blair ◽  
G. A. Holmes

A device was designed and built that attaches to servohydraulic machines that typically perform material fatigue testing. The device was designed to systematically fold woven fabric and yarns of ballistic fibers to assess the impact of mechanical folding, such as may occur during use, on ballistic fiber properties. Initial tests indicate that the device repeatedly folds a piece of woven fabric at the same location. However, when the device is in the open position, a consistent 1cm movement of the fabric was observed. A slight modification of the device is required to eliminate this movement. After cycling a piece of woven poly(benzoxazole) (PBO) fabric for 5500 cycles, an 18% reduction in the ultimate tensile strength and strain to failure of the PBO fibers was observed. Research is continuing to determine a relevant and optimized testing protocol.


Sign in / Sign up

Export Citation Format

Share Document