Force Controllers for AMB Systems with Position and Current Feedback

2013 ◽  
Vol 198 ◽  
pp. 495-500 ◽  
Author(s):  
Rafał P. Jastrzębski ◽  
Alexander Smirnov ◽  
Olli Pyrhönen

In this paper, the state-of-the-art AMB controller structure, with an outer centralized position control loop with reference currents and inner current control loops, is replaced with an outer control loop with force references and inner flux control loops. The linearization of the force actuators and different control schemes of the centralized outer control for the radial suspension are considered. The operation of the proposed control under a zero bias is verified by simulations. The proposed control solution can achieve a dynamic performance comparable with that of a controller with the classical bias current.

2014 ◽  
Vol 551 ◽  
pp. 548-554
Author(s):  
He Song Liu ◽  
Yong Ling Fu ◽  
Juan Chen ◽  
Hui Chen

Electro mechanical actuator (EMA) is an important type of power-by-wire (PBW) actuator. The dynamic performance of EMA is a key issue especially when it is mounted on a fighter aircraft. Generally, the EMA adopts permanent magnet synchronous motor (PMSM) as the drive unit. It is a position controlled cascade system with an inner current control loop. This study focuses on the current control loop and proposes a scheme which utilizes optimal current trajectory control to exploit the inherent torque capability of the motor. Compared with traditional current control, i.e. id=0 strategy, the torque capability of the motor is maximized and the speed range is expanded. This directly improves the EMA dynamic performance. Faster transient process is demonstrated experimentally, which verifies the efficiency of the proposed scheme.


2015 ◽  
Vol 741 ◽  
pp. 619-622
Author(s):  
Cho Lung Ryang ◽  
Da Ling Wang

This paper presents a novel closed current control loop of permanent magnet synchronous motor (PMSM). Conventional current control loops need two PI controllers per one PMSM. The paper provides a method for reduction of the resource consumption by using one PI controller for two PMSM. Combining with Black Box Blockset written by Verilog HDL based on Xilinx System Generator, one effective PI controller is designed instead of four PI controllers and simulated using Simulink. The utilization of FPGA resources is verified by Xilinx ISE 14.7 tool. The results show that the proposed method can reduce resource consumption and do not influence system performances observably.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1114
Author(s):  
Sung-Hun Kim ◽  
Bum-Jun Kim ◽  
Jung-Min Park ◽  
Chung-Yuen Won

Input-Series-Output-Parallel (ISOP) converters, a kind of modular converter, are used in high-input voltage and high-output current applications. In ISOP converters, Input Voltage Sharing (IVS) and Output Current Sharing (OCS) should be implemented for stable operation. In order to solve this problem, this paper proposes a decentralized control method. In the proposed control, output current reference is changed according to the decentralized control characteristic in individual current control loops. In this way, the proposed control method is able to implement IVS and OCS without communication. Also, this method can be easily used in current control loops and has high reliability compared to conventional control methods that require communication. In this paper, the operation principle is described to elucidate the proposed control and a small signal model of an ISOP converter is also implemented. Based on the small signal model, IVS stability analysis is performed using pole-zero maps with varying coefficients and control gains. In addition, the current control loop is designed in a stable region. In order to demonstrate the proposed control method, a prototype ISOP converter is configured using full-bridge converters. The performance of IVS and OCS in an ISOP converter is verified by experimental result.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Muamer M. Shebani ◽  
Tariq Iqbal ◽  
John E. Quaicoe

Load current sharing between parallel-connected DC-DC boost converters is very important for system reliability. This paper proposes a modified droop method based on master current control for parallel-connected DC-DC boost converters. The modified droop method uses an algorithm for parallel-connected DC-DC boost converters to adaptively adjust the reference voltage for each converter according to the load regulation characteristics of the droop method. Unlike the conventional droop method, the current feedback signal (master current) for one of the parallel-connected converters is used in the inner loop controller for all converters to avoid any differences in the time delay of the control loops for the parallel-connected converters. The algorithm ensures that the load current sharing is identical to the load regulation characteristics of the droop method. The proposed algorithm is tested with a mismatch in the parameters of the parallel converters. The effectiveness of the proposed algorithm is verified using Matlab/Simulink simulation.


Author(s):  
Ahmed H. Okilly ◽  
Jeihoon Baek

This paper presents an optimal design for the inner current control loop of the continuous current conduction mode (CCM) power factor correction (PFC) stage, which it can be used as the front stage of the two stages alternating current-direct current (AC-DC) telecom power supply. Conventional single-phase CCM-PFC boost converter usually implemented with using of the proportional-integral (PI) controllers in both of the voltage and current control loops, to regulate the output DC voltage to the specified value, moreover to maintains the input current follows the input voltage which offers converter with high power factor (P.F) and low current total harmonic distortion (THD). However, due to the slow dynamic response of the PI controller at the zero-crossing point of the input supply current, input current can’t fully follow the input voltage which leads to high THD. Digitally controlled PFC converter with an optimal design of the inner current control loop using doubly control loops IP controller to reduce the THD and to offer input current with unity P.F was performed in this paper. Furthermore, for the economic design of the digitally control PFC converter, two isolated AC and DC voltage sensors are proposed and designed for the interfacing with the microcontroller unit (MCU). PSIM software was used to test the converter performance with using the proposed designed current controllers and isolated voltage sensors. High power density digitally controlled telecom PFC stage with P.F of about 99.93%, full load efficiency of about 98.70% and THD less 5.50% is achieved in this work.


Author(s):  
Yacine Bendjeddou ◽  
Abdelhakim Deboucha ◽  
Larafi Bentouhami ◽  
Elkheir Merabet ◽  
Rachid Abdessemed

AbstractTo enhance the robustness and dynamic performance of a self-excited induction generator (SEIG) used in a stand-alone wind energy system (WES), a virtual flux oriented control (VFOC) based on nonlinear super-twisting sliding mode control (STSMC) is adopted. STSMC is used to replace the conventional proportional-integral-Fuzzy Logic Controller (PI-FLC) of the inner current control loops. The combination of the proposed control strategy with space vector modulation (SVM) applied to a PWM rectifier brings many advantages such as reduction in harmonics, and precise and rapid tracking of the references. The performance of the proposed control technique (STSMC-VFOC-SVM) is verified through simulations and compared with the traditional technique (PI-FLC-VFOC-SVM). It shows that the proposed method improves the dynamics of the system with reduced current harmonics. In addition, the use of a virtual flux estimator instead of a phase-locked loop (PLL) eliminates the line voltage sensors and thus increases the reliability of the system.


2018 ◽  
Vol 3 (1) ◽  
pp. 35-45
Author(s):  
Tomasz Tarczewski ◽  
Michal Skiwski ◽  
Lech M. Grzesiak ◽  
Marek Zieliński

Abstract The article presents modern PMSM servo-drive with SiC MOSFETs power devices and microprocessor with ARM Cortex core. The high switching frequency is obtained due to the application of high efficient power switching components and powerful microprocessor. It allows to achieve good dynamical properties of current control loop, proper disturbance compensation and silent operation of servo-drive. Experimental tests results obtained for two different control schemes (i.e., cascade control structure and state feedback position control) are presented.


Author(s):  
Chao Huang ◽  
Liang Li ◽  
Xiangyu Wang

In an era of automated driving, steer-by-wire system seems to be an indispensable component for an autonomous vehicle. Among the many problems concerned, steering control of the system may be arguably the most indispensable part that lay the foundation for the system and is essentially a position servo control problem. Traditionally, the most commonly used control loop structures of the position servo system can be classified into two categories, both considering the current control loop as an essential part. However, this is not necessarily true in practical applications. In view of this, control systems with two different types of control loops based on proportional–integral–derivative controllers have been designed and compared in this paper for trajectory tracking of the steer-by-wire system with Coulomb friction. The aim is to explore the essential differences between the two types of control loops and study the effect of current loop on performance of the system. When properly designed, it can be seen that the asymptotic stability of the control system can be guaranteed. However, the system with type I control loop has a faster response speed, whereas the system with type II control loop has a smoother response. Theoretical as well as simulation and experimental results have been provided in detail, which can contribute to the understanding of the two types of control loops and can be used as guidance not only for researchers but also for engineering practice.


1974 ◽  
Vol 96 (1) ◽  
pp. 36-40 ◽  
Author(s):  
A. E. Middleditch

Automatic machine tools have traditionally been controlled by hard-wired numerical controllers (NC). Recently, systems have been introduced which use a general purpose mini-computer (CNC). Some of these computer systems generate position references and close the position control loops of the machine tool’s feed axes using software, while others retain these functions in hardware. If the software approach is used, the dynamic performance of the system may be degraded. This paper investigates the constraints necessary to avoid severe performance degradation.


Sign in / Sign up

Export Citation Format

Share Document