Numerical Modeling of the Phenomena of Frictional Coupling between Wheel and Rail to Describe and Verify the Operation of Surface Condition Detector

2015 ◽  
Vol 220-221 ◽  
pp. 251-256 ◽  
Author(s):  
Andrzej Niedworok ◽  
Andrzej Baier

Presentation of the numerical model describing a design and functionality of the prototype of surface condition detector is the paper subject. The detector, by monitoring the frictional coupling between so-called “tracking wheel” of the dedicated measuring transducer and a rail can analyse the condition of rail surface (presence of any factor that can deteriorate friction coefficient) [1]. Signal generated at the detector outlet, carrying information about local condition of rail surface, can be used to adjust braking torque of vehicles or machines moving on a track. Authors expect that implementation of the method will eliminated dangerous elongation of braking distance of rail vehicles in the result of loss of adhesion. Structure of detector of rail surface condition is described and its principle of operation is presented in a form of numerical model. Results of numerical simulations are given and they are compared with the measurements taken on the testing facility in real conditions.

2000 ◽  
Vol 28 (2) ◽  
pp. 119-137 ◽  
Author(s):  
P. Lemerle ◽  
P. Mistrot

Abstract Counterbalance trucks are machines in widespread use in every industrial sector. Unlike cars, they are not designed with suspension systems. Consequently, they are considered to be high vibrating vehicles. Nevertheless, like suspension seats, tires can be selected as suspension parts. This paper presents a new numerical model for the analysis of the vibratory behavior of counterbalance truck tires. This model was intended to be a part of a fork lift truck model, including axles, chassis, and cabin. All the results reported here show a close agreement between measurements and numerical simulations. Thus, it can predict the vibration emission values at the driving position and is used to compare the efficiency of solid tires with pneumatic tires in terms of transmitted vibration levels.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 884
Author(s):  
Rawaa Shaheed ◽  
Abdolmajid Mohammadian ◽  
Xiaohui Yan

River bends are one of the common elements in most natural rivers, and secondary flow is one of the most important flow features in the bends. The secondary flow is perpendicular to the main flow and has a helical path moving towards the outer bank at the upper part of the river cross-section, and towards the inner bank at the lower part of the river cross-section. The secondary flow causes a redistribution in the main flow. Accordingly, this redistribution and sediment transport by the secondary flow may lead to the formation of a typical pattern of river bend profile. It is important to study and understand the flow pattern in order to predict the profile and the position of the bend in the river. However, there are a lack of comprehensive reviews on the advances in numerical modeling of bend secondary flow in the literature. Therefore, this study comprehensively reviews the fundamentals of secondary flow, the governing equations and boundary conditions for numerical simulations, and previous numerical studies on river bend flows. Most importantly, it reviews various numerical simulation strategies and performance of various turbulence models in simulating the flow in river bends and concludes that the main problem is finding the appropriate model for each case of turbulent flow. The present review summarizes the recent advances in numerical modeling of secondary flow and points out the key challenges, which can provide useful information for future studies.


2013 ◽  
Vol 13 (9) ◽  
pp. 2223-2238 ◽  
Author(s):  
A. Boilley ◽  
J.-F. Mahfouf

Abstract. The Nice Côte d'Azur international airport is subject to horizontal low-level wind shears. Detecting and predicting these hazards is a major concern for aircraft security. A measurement campaign took place over the Nice airport in 2009 including 4 anemometers, 1 wind lidar and 1 wind profiler. Two wind shear events were observed during this measurement campaign. Numerical simulations were carried out with Meso-NH in a configuration compatible with near-real time applications to determine the ability of the numerical model to predict these events and to study the meteorological situations generating an horizontal wind shear. A comparison between numerical simulation and the observation dataset is conducted in this paper.


2020 ◽  
Vol 14 (1) ◽  
pp. 154-163
Author(s):  
Don Bum Choi ◽  
Rag-Gyo Jeong ◽  
Yongkook Kim ◽  
Jangbom Chai

Background: This paper describes the predictions and validation of the pneumatic emergency braking performance of a freight train consisting of a locomotive and 20 wagons, generally operated in Korea. It suggests the possibility of replacing the expensive and time-consuming train running tests with longitudinal train dynamic simulations. Methods: The simulation of longitudinal train dynamics of a freight train uses the time integration method of EN 14531. For reasonable simulation results, the characteristics of the train and brake equipment must be considered. For the train characteristics, specifications provided by the vehicle manufacturer are used. The braking characteristics are analyzed by friction coefficient tests and a braking pressure model. The friction coefficients of a locomotive and wagons are tested with a dynamo test bench and statistically expanded to account for variability. Freight trains should take into account the braking delay time. To reflect this in the simulation, the brake cylinder pressure pattern model uses pressures and exponential empirical equations measured at selective positions in a train of 50 vehicles. The simulation results are validated in comparison with those of the braking tests of a freight train consisting of 1 locomotive and 20 wagons. Results: The results of the longitudinal dynamics simulation show very similar results to the running test results based on the speed profile and braking distance. Conclusion: In particular, the statistical expansion method of the friction coefficient enables robust prediction of the distribution of the braking distance. The simulation can reduce or make up for costly and time-consuming repeated braking tests and reduce the risks that may arise during testing.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Luigi Bregant ◽  
Lucia Parussini ◽  
Valentino Pediroda

In order to perform the accurate tuning of a machine and improve its performance to the requested tasks, the knowledge of the reciprocal influence among the system's parameters is of paramount importance to achieve the sought result with minimum effort and time. Numerical simulations are an invaluable tool to carry out the system optimization, but modeling limitations restrict the capabilities of this approach. On the other side, real tests and measurements are lengthy, expensive, and not always feasible. This is the reason why a mixed approach is presented in this work. The combination, through recursive cokriging, of low-fidelity, yet extensive, numerical model results, together with a limited number of highly accurate experimental measurements, allows to understand the dynamics of the machine in an extended and accurate way. The results of a controllable experiment are presented and the advantages and drawbacks of the proposed approach are also discussed.


Radiocarbon ◽  
2012 ◽  
Vol 54 (1) ◽  
pp. 91-105 ◽  
Author(s):  
Luca C Malatesta ◽  
Sébastien Castelltort ◽  
Simone Mantellini ◽  
Vincenzo Picotti ◽  
Irka Hajdas ◽  
...  

The oasis of Samarkand in the Middle Zeravshan Valley (modern Uzbekistan) was a major political and economic center in ancient western Central Asia. The chronology of its irrigation system was, until now, only constrained by the quality and quantity of archaeological findings and several different hypotheses have been proposed for it. We use a new approach combining archaeological surveying, radiocarbon dating, sedimentary analysis, and the numerical modeling of a flood event to offer new evidence for, and quantitative dating of, the development of irrigation system on the southern flank of the Middle Zeravshan Valley. We analyzed 13 bones and charcoals from 3 archaeological sites and obtained new 14C ages from Afrasiab (ancient Samarkand), a dwelling damaged by flooding in the 2nd century AD (site code: SAM-174) and the fortress of Kafir Kala. We established the origin of sedimentary deposits at the sites to infer the presence of the 2 most important canals of the southern flank: the Dargom and the Yanghiaryk. Finally, we show with a numerical model of overland flow that a natural flood was unlikely to have produced the damage observed at SAM-174. The combined results of the study indicate that the canals south of Samarkand existed, and were mainly developed, in the 2nd century AD and were not connected to the main feeding canal of Afrasiab at that time.


2020 ◽  
Vol 846 ◽  
pp. 117-121
Author(s):  
Min Sik Lee ◽  
Jun Park ◽  
J.S.Suresh Babu ◽  
Chung Gil Kang

In this paper, hot and cold deep drawing processes are determined with direct deep drawing process and indirect deep drawing process. To predict the friction coefficient, the finite-element method, which can predict deformation behavior until the fracture of a blank sheet, was proposed using the forming limit diagram (FLD) curve. The effect of fracturing of the coating layer on the friction coefficient during the hot and cold deep drawing processes was investigated. The deformation behavior of the coating layer of the boron steel sheet that affects the friction coefficient in the hot and cold deep drawing processes was also proposed. A forming method that can control the surface condition of the formed product is further proposed by explaining the fracture of the coating due to the forming process.


2020 ◽  
Vol 105 (1) ◽  
pp. 1-19 ◽  
Author(s):  
Mohammad Heidarzadeh ◽  
Takumu Iwamoto ◽  
Tomohiro Takagawa ◽  
Hiroshi Takagi

AbstractTyphoon Lionrock, also known as the national number 1610 in Japan, caused severe flooding in east Japan in August 28–31, 2016, leaving a death toll of 22. With a maximum sustained wind speed of ~ 220 km/h from the Joint Typhoon Warning Center’s best track, Lionrock was classified as a category 4 hurricane in Saffir–Simpson Hurricane Wind Scale and as a typhoon in Japan Meteorological Agency’s scale. Lionrock was among unique typhoons as it started its landfall from north of Japan. Here, we studied the characteristics of this typhoon through tide gauge data analysis, field surveys and numerical modeling. Tide gauge analysis showed that the surges generated by Lionrock were in the ranges of 15–55 cm with surge duration of 0.8–3.1 days. Our field surveys revealed that the damage to coastal communities/structures was moderate although it caused severe flooding inland. We measured a maximum coastal wave runup of 4.3 m in Iwaisaki. Such a runup was smaller than that generated by other category 4 typhoons hitting Japan in the past. Our numerical model was able to reproduce the storm surge generated by the 2016 Typhoon Lionrock. This validated numerical model can be used in the future for typhoon-hazard studies along the coast of northeastern Japan. Despite relatively small surge/wave runups in coastal areas, Lionrock’s death toll was more than that of some other category 4 typhoons. We attribute this to various primary (e.g., flooding, surges, waves, strong winds) and secondary (e.g., landslides, coastal erosions, debris flows, wind-blown debris) mechanisms and their combinations and interactions that contribute to damage/death during a typhoon event.


2013 ◽  
Vol 62 (1) ◽  
Author(s):  
Rudi Heriansyah

There are many commercial software to perform numerical modeling based on finite element (FEM) and finite difference (FDM) methods. It is often a requirement to the designer, that the values of the individual nodes in the numerical model are known. Usually, these softwares provide two methods to achieve this; firstly, by clicking directly onto the nodes of interest and secondly, by saving or exporting the whole nodal values to an external file. The former way is appropriate for models with small number of nodes, but as the number of nodes increases, it is no longer an efficient or effective way. Through the latter method, all nodal values are obtained, however the values are one-dimensional, and in some cases, only certain nodal values are required for presentation. In this paper, an algorithm for automatic composition of nodal values obtained from the second method mentioned above. The composed nodal values will be in two-dimensional form as this is the format used for uniform shaped model (square or rectangular). Since numerical softwares usually have facilities to save the data in a spreadsheet format, the proposed algorithm is implemented in this environment by using spreadsheet script programming.


Author(s):  
Owen I. Crabtree ◽  
Sinisa Dj. Mesarovic ◽  
Ismail Demir ◽  
Robert F. Richards ◽  
David F. Bahr ◽  
...  

A numerical model is developed to understand the behavior of a laminated, piezoelectric, geometrically nonlinear MEMS device. The finite difference method is chosen, along with the Newmark technique to model the static and vibrational behavior. This technique is validated by comparison to empirical data. The developed model is exercised to understand and optimize the device by studying residual stress, layer thicknesses, and electrode sizes with the goal of reduction of fundamental frequency and increase of charge output.


Sign in / Sign up

Export Citation Format

Share Document