The Effect of Deposition Parameters on the Structural and Mechanical Properties of BN Coatings Deposited onto High-Speed Steel by the PLD Method

2015 ◽  
Vol 220-221 ◽  
pp. 737-742
Author(s):  
Krzysztof Gocman ◽  
Tadeusz Kałdoński ◽  
Waldemar Mróz ◽  
Bogusław Budner

Boron nitride coatings have been deposited onto high-speed steel substrates using pulsed laser deposition technique combined with RF-discharge. In order to improve adhesion and reduce internal stresses, substrates were subjected to gas nitriding. The structure and morphology of coatings were investigated applying atomic force microscopy (AFM) and FTIR spectroscopy. Nanohardness and elastic modulus were examined employing a nanoanalyzer (CETR). On the basis of the conducted experiments, stable, crystalline, multiphase coatings have been obtained. It has been proved that morphology, structure and mechanical properties strongly depend on the parameters of the PLD process; in particular, the temperature of the substrate has a crucial influence on the properties of BN coatings.

2003 ◽  
Vol 806 ◽  
Author(s):  
Senthil N Sambandam ◽  
Shekhar Bhansali ◽  
Venkat R. Bhethanabotla

ABSTRACTMicrostructures of multi-component amorphous metallic glass alloys are becoming increasingly important due to their excellent mechanical properties and low coefficient of friction. In this work, thin films of Zr-Ti-Cu-Ni-Be have been deposited by DC magnetron sputtering in view of exploring their potential technological applications in fields such as Micro Electro Mechanical Systems (MEMS). Their structure, composition, surface morphology, mechanical properties viz., hardness and Young's modulus were analyzed using X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and Nanoindentation. Influence of the deposition parameters of sputtering pressure and power upon the composition and surface morphology of these films has been evidenced by SEM, and AFM analysis, showing that such a process yields very smooth films with target composition at low sputtering pressures. These studies are useful in understanding the multicomponent sputtering process.


2016 ◽  
Vol 258 ◽  
pp. 318-321 ◽  
Author(s):  
Vilma Buršíková ◽  
Jaroslav Sobota ◽  
Jan Grossman ◽  
Tomáš Fořt ◽  
Libor Dupák ◽  
...  

The aim of the present work was to study the mechanical properties of thin nanocomposite Mo-B-C coatings consisting of nanocrystalline Mo2BC embedded in amorphous Mo-B-C matrix. Magnetron sputtering of three targets, B4C, C and Mo, was used for coatings preparation. The Mo-B-C coatings were deposited on high speed steel substrates. The fracture resistance of Mo-B-C coatings was studied by both indentation and dynamic impact tests. The impact tests enabled us to predict the load limit causing the coating destruction.


2001 ◽  
Vol 697 ◽  
Author(s):  
A.K. Sikder ◽  
I. M. Irfan ◽  
Ashok Kumar ◽  
Robert Durvin ◽  
Mark McDonough ◽  
...  

Mechanical properties of thin films differ significantly from those of bulk materials due to the effects of interfaces, microstructure and thick underlying substrates. In this study we will present the results of nanoindentation tests to evaluate mechanical properties of nitride (TiN, ZrN, CrN, TiCN and TiAlN) thin films. Films were coated on steel substrates using cathodic arc deposition technique. Surface morphology and roughness of the samples are investigated using atomic force microscopy (AFM). Films were also characterized by x-ray diffraction (XRD) technique. Nanoindentation technique along with AFM and XRD methods are very useful for characterizing hard thin coatings.


2014 ◽  
Vol 604 ◽  
pp. 67-70
Author(s):  
Leonid Kupchenko ◽  
Rauno Tali ◽  
Eron Adoberg ◽  
Valdek Mikli ◽  
Vitali Podgursky

TiN coatings with different thickness were prepared by arc ion plating (AIP) physical vapor deposition (PVD) on high speed steel (HSS) substrates. TiN coatings surface roughness was investigated by atomic force microscopy (AFM) and 3D optical profilometry and growth kinetics was described using scaling exponents β and α. The growth exponent β is 0.91-1.0 and the roughness exponent α is 0.77-0.81. Due to relatively high value of the exponent α, the surface diffusion is likely predominant smoothening mechanism of TiN growth.


2010 ◽  
Vol 434-435 ◽  
pp. 466-468
Author(s):  
Chien Cheng Liu ◽  
Kuang I Liu ◽  
Huai Wei Yan ◽  
Chia Li Ma ◽  
Jow Lay Huang

In this study, multilayers of TiN/NbN were deposited by d.c. magnetron sputtering on die steel substrates. The structure, morphology and nano-hardness were assessed using X-ray diffraction, atomic force microscopy (AFM), stylus profiler (XP-2 stylus profiler) and nanoindentation, respectively. Wear tests were performed on pin-on-disk configuration and dry sliding conditions, at 5N load by using hardened steel ball. The result shows TiN with highly (111) preferred orientation. On mechanical properties, Young’s modulus and hardness values increase for layers number increase. At 64 layers films had the highest nano-hardness, Young’s modulus values. The TiN/NbN multilayer films presented changes in its morphology becoming more granulated and density after heating up to 500°C. A significant decrease in friction coefficient has been achieved for TiN/NbN multilayers against steel ball.


Author(s):  
I. A. Morozov ◽  

Atomic force microscopy (AFM) is a powerful tool for studying the structural and physical-mechanical properties of surfaces. The AFM experiment consists in detecting the interaction be-tween the probe and the material. The probe is an elastic cantilever fixed horizontally at one end; a tip is located at the free end of the cantilever. The interaction of the tip with the surface causes de-flection of the cantilever, which is interpreted depending on the experimental conditions. High-speed indentation atomic force microscopy methods allow obtaining maps of three-dimensional re-lief and physical-mechanical properties of the material in high resolution at micro- and nanoscale levels. In this case, the probe is rapidly pressed on the material and the interaction is recorded at each point of the surface of the studied area. The user sets the speed at which the probe approaches the material surface. This value is assumed to be constant and is called the indentation rate. How-ever, this is not true: the tip speed at the loose end of the cantilever depends in general on many factors. As an example of investigation of polyurethane surface (heterogeneous two-phase poly-mer) it is shown that the probe-material interaction speed nonlinearly depends on the surface area, indentation depth and direction, nominal speed of experiment, cantilever properties. This affects the measurement of relief topography, stiffness, Van der Waals forces and adhesion between the probe and the material. Thus, for a correct quantitative interpretation of the results, the interaction speed of the tip with the material must be taken into account; this statement is especially important when working with soft polymers. The presented methods can be useful in the study of a wide class of soft heterogeneous materials.


2014 ◽  
Vol 875-877 ◽  
pp. 218-222
Author(s):  
Mei Dong Huang ◽  
Li Xue ◽  
Fan Yu Meng ◽  
Hong Yu Li ◽  
Xi Ying Fan

Ti,Cr)N films were fabricated on the well-polished high-speed-steel substrate under various deposition conditions by arc ion plating. X-ray diffraction was employed to characterize the phase and microstructure of the films, and the preferred orientation of the crystalline plane was discussed in terms of negative bias and nitrogen flow, respectively. The morphology of the films was investigated using scanning electron microscopy. The size and density of macro-particles were compared for different bias and nitrogen flow. The mechanical properties of the films were investigated. The hardness and elastic module were tested by the XP nanoindenter. The results show that the size as well as the number of the macro-particles decreases with increasing negative bias, presenting a smoother surface. The films have preferred (111) plane at low biases but (200) plane at high ones. The hardness and elastic modulus of (Ti,Cr)N films increases with increasing negative bias. Larger hardness can be achieved by increasing nitrogen flow. It is found that the mechanical properties, such as hardness and elastic module of (Ti, Cr)N films are better than those of TiN films, according to the comparison of the experimental results. It indicates that the mechanical properties of TiN can be enhanced by doping Cr. The mechanism is also discussed and analysed by taking deposition parameters into account.


2001 ◽  
Vol 697 ◽  
Author(s):  
Xiaowu Fan ◽  
Rigoberto C. Advincula

AbstractRecently, we have investigated the electrostatic layer-by-layer (ELBL) deposition of polycation and clay platelet ultrathin films. We have investigated the properties of these films using techniques such as ellipsometry, X-ray diffraction and atomic force microscopy (AFM). In this work, we report our results regarding the formation of this type of hybrid ultrathin films focusing on their mechanical properties as probed by nanoindentation experiments. Structural information such as film thickness, platelet coverage, surface morphology, roughness, etc., is important parameters for their potential use as coatings. We have investigated the relationship of several of these parameters with their mechanical hardness and modulus properties as a function of indentor probe depth in nanoindentation experiments. The ultrathin films have remarkable mechanical properties very different from most polymer ultrathin films.


2014 ◽  
Vol 5 ◽  
pp. 2459-2467 ◽  
Author(s):  
Adrian P Nievergelt ◽  
Jonathan D Adams ◽  
Pascal D Odermatt ◽  
Georg E Fantner

Multifrequency atomic force microscopy imaging has been recently demonstrated as a powerful technique for quickly obtaining information about the mechanical properties of a sample. Combining this development with recent gains in imaging speed through small cantilevers holds the promise of a convenient, high-speed method for obtaining nanoscale topography as well as mechanical properties. Nevertheless, instrument bandwidth limitations on cantilever excitation and readout have restricted the ability of multifrequency techniques to fully benefit from small cantilevers. We present an approach for cantilever excitation and deflection readout with a bandwidth of 20 MHz, enabling multifrequency techniques extended beyond 2 MHz for obtaining materials contrast in liquid and air, as well as soft imaging of delicate biological samples.


Sign in / Sign up

Export Citation Format

Share Document