A Comparison on Column Reinforcement with Conventional Concrete and Carbon Fiber / Epoxy Exposed to Compression Loading

2020 ◽  
Vol 305 ◽  
pp. 85-90
Author(s):  
Faruk Elaldi ◽  
Batuhan Ciloglu ◽  
Yasin Yanikkaya

There are lots of concrete columns and beams around in our living cities. Those items are mostly open to aggressively environmental conditions. Mostly, they are deteriorated by sand wind, humidity and other external applications. After a while these beam and columns need to be repaired. Within the scope of this study, for reinforcement of concrete columns, samples were designed and fabricated to be strengthened with carbon fiber reinforced composite materials and conventional concrete encapsulation and followed by, they were put into the axial compression test to determine load carrying performance before column failure. In the first stage of this study, concrete column design and mold designs were completed for a certain load carrying capacity. Later, the columns were exposed to environmental deterioration in order to reduce load carrying capacity. To reinforce these damaged columns, two methods were applied, the one “concrete encapsulation” and the other one “wrapping with carbon fiber /epoxy” material. In the second stage of the study, the reinforced columns were applied to axial compression test and the results obtained were analyzed. Cost and load carrying performance comparisons were made and it is found that even though carbon fiber/epoxy reinforced method is more expensive, this method enhances higher load carrying capacity and reduces reinforcement processing period.

2021 ◽  
Vol 23 (2) ◽  
pp. 115-122
Author(s):  
Junaedi Utomo ◽  
Muhammad Nur Khusyeni ◽  
Windu Partono ◽  
Ay Lie Han ◽  
Buntara S. Gan

Carbon Fiber Reinforced Polymers (CFRP) are widely used as external concrete reinforcement. The behavior of T-beams strengthened in shear and flexure using CFRP sheets and plates was studied to analyze the load carrying capacity and failure mode as compared to conventional concrete members. The bonding response of the plate-to-concrete was investigated by comparing a specimen with a plate anchored at the far ends, one without anchoring. The sheets were in situ wet lay-up, the plate was pre-impregnated and pultruded during manufacturing. The test result suggested that this integrated strengthening method notably improved the load-carrying capacity, it was also demonstrated that anchoring had a positive but insignificant effect on the moment capacity and deformation. The influence of anchoring was noteworthy from the point of view that it shifted the failure mode from debonding to CFRP plate rupture. The most important factors influencing the behavior of CFRP strengthened beams are outlined.


2011 ◽  
Vol 99-100 ◽  
pp. 715-718 ◽  
Author(s):  
Jun Dong ◽  
De Ping Chen ◽  
Ju Mei Zhao ◽  
De Shan Shan ◽  
Xin Yue Liu ◽  
...  

Twelve PVC tubed short concrete columns and four columns without PVC tube confined were tested under axial load to investigate mechanical properties of axially loaded PVC tubed short concrete columns . The principal influencing factors such as concrete strength, loading condition and ratio of height to diameter were studied. Test results indicated that strength and deformation performance of core concrete increased as a result of the confinement of PVC tube. The PVC tube confinement effect on concrete will decrease with an increase in strength of concrete. Load- carrying capacity and deformation of short composite columns with different loading condition made some difference. As the ratio of height to diameter increases, load- carrying capacity and plasticity of short composite columns decreased gradually.


1994 ◽  
Vol 61 (4) ◽  
pp. 998-1000 ◽  
Author(s):  
M. Savoia ◽  
J. N. Reddy

The post-buckling of stiffened, cross-ply laminated, circular determine the effects of shell lamination scheme and stiffeners on the reduced load-carrying capacity. The effect of geometric imperfection is also included. The analysis is based on the layerwise shell theory of Reddy, and the “smeared stiffener” technique is used to account for the stiffener stiffness. Nu cylinders under uniform axial compression is investigated to merical results for stiffened and unstiffened cylinders are presented, showing that imperfection-sensitivity is strictly related to the number of nearly simultaneous buckling modes.


2018 ◽  
Vol 162 ◽  
pp. 04005
Author(s):  
Kaiss Sarsam ◽  
Raid Khalel ◽  
Mohammed Hadi

An experimental study was carried out to investigate the behavior of normal strength reinforce concret (RC) circular short column strengthned with “carbon fiber reinforced polymer (CFRP) sheets”. Three series comprising totally of (15) specimens loaded until failure under concentric compresion load. Strengthening was varied by changing the number of CFRP strips, spacing and wrapping methods. The findings of this research can be summarized as follows: for the columns without CFRP, the influence of the tie spacing was significant: compared with 130 mm tie spacing, dropping the spacing to 100 mm and 70 mm increased the load carrying capacity by 18% and 26%, respectively. The columns with less internal confinement (lesser amount of ties) were strengthened more significantly by the CFRP than the ones with greater amount of internal ties. As an example of the varying effectiveness of the fully wrapped CFRP, the column with ties at 130 mm was strengthened by 90% with the CFRP. In contrast, the ones with 70 mm spaced ties only increased in strength with CFRP by 66%. Compared with the control specimen (no CFRP), the same amount of CFRP when used as hoop strips led to more strengthening than using CFRP as a spiral strip- the former led to nearly 9% more strengthening than the latter in the case of 130 mm spaced internal steel ties. In the case of 100 mm internal steel ties, the difference (between the hoops & spiral CFRP strengthening) is close to 4%. In contrast, there is no difference between the two methods of strengthening in the heavily tied columns (70 mm tied spacing).


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Anandakumar Ramaswamy ◽  
Selvamony Chachithanantham ◽  
Seeni Arumugam

This paper deals with the behaviour of basalt fibre reinforced polymer (BFRP) composites retrofitted RCC piles subjected to axial compression loads. Currently the awareness of using FRP increases rapidly in engineering fields and also among public. Retrofitting becomes vital for aged and damaged concrete structures, piles, and so forth, to improve its load carrying capacity and to extend the service life. The load carrying capacity of piles retrofitted with basalt unidirectional fabric was studied experimentally. 15 nos. of RCC end bearing pile elements were cast with same reinforcement for axial compression experiment. Three piles were used as conventional elements, another 3 piles were used as double BFRP wrapped pile elements, and remaining 9 piles were used as retrofitted piles with BFRP double wrapping after preloaded to 30%, 60%, and 90% of ultimate load of conventional element. The effects of retrofitting of RCC pile elements were observed and a mathematical prediction was developed for calculation of retrofitting strength. The stress vs. strain relationship curve, load vs. deformation curve, preloaded elements strength losses are tabulated and plotted. Besides, crack patterns of conventional elements and tearing BFRP wrapped elements were also observed. The BFRP wrapped elements and retrofitted elements withstand more axial compressive load than the conventional elements.


Sign in / Sign up

Export Citation Format

Share Document