Grains of Porous Silicon Embedded in SiO2:Studies of Optical Gain and Electroluminescence

2004 ◽  
Vol 99-100 ◽  
pp. 31-36 ◽  
Author(s):  
K. Dohnalová ◽  
K. Luterová ◽  
J. Valenta ◽  
Jiří Buršík ◽  
M. Procházka ◽  
...  

Recent reports on experimental observation of optical gain in silicon nanostructures in the visible region, performed at several laboratories all over the world, have triggered an extraordinary surge of interest in silicon lasing. However, attempts aimed at reproducing the red stimulated emission from „standard“silicon nanocrystals (sized 3-5 nm) at some other laboratories either failed, or. did not come to definite conclusions. Therefore, more detailed measurements of optical gain in a wider variety of samples containing Si nanocrystals are required in order to unravel whether or not the observation of optical gain is an intrinsic property of Si nanocrystals. We have performed a detailed study of optical gain in layers of densely packed Si nanocrystals in SiO2, prepared on the basis of porous Si, using the variable-stripe-length (VSL) method in combination with the shifted-excitation-spot (SES) method. In selected samples we have observed a distinct difference in behaviour between VSL and SES curves, indicating the occurrence of positive optical gain of ~ 24 cm-1. Preliminary reports on transport and electroluminescence measurements in thin films of SiO2 doped with porous silicon grains, prepared by spin-coating technique, are also discussed.

1996 ◽  
Vol 452 ◽  
Author(s):  
Gildardo R. Delgado ◽  
Howard W.H. Lee ◽  
Susan M. Kauzlarich ◽  
Richard A. Bley

AbstractWe studied the optical and electronic properties of silicon nanocrystals derived from two distinct fabrication procedures. One technique uses a controlled chemical reaction. In the other case, silicon nanocrystals are produced by ultrasonic fracturing of porous silicon layers. We report on the photoluminescence, photoluminescence excitation, and absorption spectroscopy of various size distributions derived from these techniques. We compare the different optical properties of silicon nanocrystals made this way and contrast them with that observed in porous silicon. Our results emphasize the dominant role of surface states in these systems as manifested by the different surface passivation layers present in these different fabrication techniques. Experimental absorption measurements are compared to theoretical calculations with good agreement. Our results provide compelling evidence for quantum confinement in both types of Si nanocrystals. Our results also indicate that the blue emission from very small Si nanocrystals corresponds to the bandedge emission, while the red emission arises from traps.


1991 ◽  
Vol 256 ◽  
Author(s):  
Nobuyoshi Koshida ◽  
Hideki Koyama

ABSTRACTThe optoelectronic properties of porous Si (PS) are presented in terms of electroluminescence (EL), photoluminescence (PL), photoconduction (PC), and optical absorption. Observations of injection-type EL, efficient PL, band-gap widening, and photosensitivities In the visible region are consistent with the quantum size effect model in PS.


1997 ◽  
Vol 486 ◽  
Author(s):  
J. Diener ◽  
M. Ben-Chorin ◽  
D. I. Kovalev ◽  
G. Polisski ◽  
F. Koch

AbstractFourier transform infrared spectroscopy is used to determine the time evolution of oxygen incorporation onto the surface of silicon nanocrystals. Oxygen concentrations up to one monolayer are investigated. The temporal progress of surface oxidation of Si nanocrystals in porous silicon shows a linear dependence on the square root of the oxidation time. This is similar to the oxidation of bulk Si and mesoporous silicon.


2008 ◽  
Vol 2008 ◽  
pp. 1-32 ◽  
Author(s):  
V. A. Belyakov ◽  
V. A. Burdov ◽  
R. Lockwood ◽  
A. Meldrum

Silicon nanocrystals (NCs) represent one of the most promising material systems for light emission applications in microphotonics. In recent years, several groups have reported on the observation of optical gain or stimulated emission in silicon NCs or in porous silicon (PSi). These results suggest that silicon-NC-based waveguide amplifiers or silicon lasers are achievable. However, in order to obtain clear and reproducible evidence of stimulated emission, it is necessary to understand the physical mechanisms at work in the light emission process. In this paper, we report on the detailed theoretical aspects of the energy levels and recombination rates in doped and undoped Si NCs, and we discuss the effects of energy transfer mechanisms. The theoretical calculations are extended toward computational simulations of ensembles of interacting nanocrystals. We will show that inhomogeneous broadening and energy transfer remain significant problems that must be overcome in order to improve the gain profile and to minimize nonradiative effects. Finally, we suggest means by which these objectives may be achieved.


2002 ◽  
Vol 738 ◽  
Author(s):  
L. Dal Negro ◽  
M. Cazzanelli ◽  
Z. Gaburro ◽  
P. Bettotti ◽  
L. Pavesi ◽  
...  

ABSTRACTTime-resolved luminescence measurements on silicon nanocrystal waveguides have revealed a fast recombination dynamics, related to population inversion which leads to net optical gain. The waveguide samples were obtained by thermal annealing of plasma enhanced chemical vapour deposited thin layers of silicon rich oxide Variable stripe length measurements performed on the fast emission signal have shown an exponential growth of the amplified spontaneous emission, with net gain values of about 10 cm-1. Both the fast component intensity and its temporal width revealed threshold behaviour as a function of the incident pump intensity. A modelling of the decay dynamics is suggested within an effective four level rate equation treatment including the delicate interplay among stimulated emission and Auger recombinations.


2002 ◽  
Vol 737 ◽  
Author(s):  
J. Ruan ◽  
H. Chen ◽  
Philippe M. Fauchet

ABSTRACTToday, the overall performance of a multi-chip computing system is limited by the interconnection delay between chips. Conventional interconnects based on metal lines are expected to cause unmanageable problems with speed and power dissipation. Optical interconnects provide a solution to these problems. However, the low quantum efficiency associated with radiative recombination in silicon has so far prevented the demonstration of a practical laser. Recently stimulated emission has been demonstrated in Si nanocrystals prepared by ion-implantation. The reported material gain is high enough to realize a practical Si based laser. However, the optical filling factor in these samples was less than 10% due to the poor wave guiding nature of these structures.In this work, we explore a possible way to achieve optical gain in nanocrystalline silicon superlattices. The samples are produced by growing alternating layers of amorphous silicon and SiO2 and then using a two step crystallization method to transform each amorphous silicon layer into a high density array of silicon nanocrystals having identical size. The waveguide structure is formed by sandwiching the superlattice between cladding layers. To measure optical gain we use the variable stripe length method where the amplified spontaneous emission emitted from the edge is measured as a function of the excitation length. Tuning from loss to gain was observed by just varying the pump power.


1994 ◽  
Vol 358 ◽  
Author(s):  
S. Schuppler ◽  
S. L. Friedman ◽  
M. A. Marcus ◽  
D.L. Adler ◽  
Y.-H. Xie ◽  
...  

ABSTRACTNear-edge and extended x-ray absorption fine structure measurements from a wide variety of H-passivated porous Si samples and oxidized Si nanocrystals, combined with electron microscopy, ir-absorption, α-recoil, and luminescence emission data, provide a consistent structural picture of the species responsible for the luminescence observed in these systems. For luminescent porous Si samples peaking in the visible region, i. e., ≤700nm, their mass-weighted-average structures are determined here to be particles–not wires, whose short-range character is crystalline – not amorphous, and whose dimensions – typically <15 Å – are significantly smaller than previously reported or proposed. These results depend only on sample luminescence behavior, not on sample preparation details, and thus have general implications in describing the mechanism responsible for visible luminescence in porous silicon. New results are also presented which demonstrate that the observed luminescence is unrelated to either the photo-oxidized Si species in porous Si or the interfacial suboxide species in the Si nanocrystals.


2003 ◽  
Vol 770 ◽  
Author(s):  
Nathanael Smith ◽  
Max J. Lederer ◽  
Marek Samoc ◽  
Barry Luther-Davies ◽  
Robert G. Elliman

AbstractOptical pump-probe measurements were performed on planar slab waveguides containing silicon nanocrystals in an attempt to measure optical gain from photo-excited silicon nanocrystals. Two experiments were performed, one with a continuous-wave probe beam and a pulsed pump beam, giving a time resolution of approximately 25 ns, and the other with a pulsed pump and probe beam, giving a time resolution of approximately 10 ps. In both cases the intensity of the probe beam was found to be attenuated by the pump beam, with the attenuation increasing monotonically with increasing pump power. Time-resolved measurements using the first experimental arrangement showed that the probe signal recovered its initial intensity on a time scale of 45-70 μs, a value comparable to the exciton lifetime in Si nanocrystals. These data are shown to be consistent with an induced absorption process such as confined carrier absorption. No evidence for optical gain was observed.


Author(s):  
H.S. Mavi ◽  
S. Rath ◽  
Arun Shukla

Laser-induced etching of silicon is used to generate silicon nanocrystals. The pore structure depends on the substrate type and etching laser wavelength. Porous silicon (PS) samples prepared by Nd:YAG laser (1.16 eV) etching of n-type substrate showed a fairly uniform and highly interconnected network of nearly circular pores separated by thin columnar boundaries, while no circular pits were produced by argon- ion laser (2.41 eV) etching under similar conditions. The size and size distribution of the nanocrystals are investigated by Raman and photoluminescence spectroscopies and analyzed within the framework of quantum confinement models.


Sign in / Sign up

Export Citation Format

Share Document