DEVELOPMENT OF RESISTANCE TO PERMETHRIN AND DICHLORVOS BY THE HOUSE FLY (DIPTERA: MUSCIDAE) FOLLOWING CONTINUOUS AND ALTERNATING INSECTICIDE USE ON FOUR FARMS

1983 ◽  
Vol 115 (12) ◽  
pp. 1555-1561 ◽  
Author(s):  
R. S. MacDonald ◽  
G. A. Surgeoner ◽  
K. R. Solomon ◽  
C. R. Harris

AbstractThe rate at which adult house flies, Musca domestica L. developed resistance to permethrin and dichlorvos, in response to two spray regimes, was studied on eight farms near Guelph, Ontario during 1980 and on four of these farms during 1981. These regimes were: continuous reliance on permethrin or permethrin alternated with dichlorvos throughout the spray season. Where sanitation was comparable, resistance to permethrin developed more rapidly in fly populations from the farms on the continuous permethrin regime than on the farm in which permethrin and dichlorvos had been alternated. Resistance to dichlorvos did not decline under the continuous regime while in the alternately selected flies resistance ratios dropped from 11 to 6 after 2 years. Frequent sanitation delayed the development of resistance in a population continuously selected with permethrin. Alternation of dissimilar insecticides appeared to be a viable means of delaying resistance in the field.

Author(s):  
Jin-Na Wang ◽  
Juan Hou ◽  
Yu-Yan Wu ◽  
Song Guo ◽  
Qin-Mei Liu ◽  
...  

Objectives. High dependency on pesticides could cause selection pressure leading to the development of resistance. This study was conducted to assess the resistance of the house fly, Musca domestica, to five insecticides, namely, permethrin, deltamethrin, beta-cypermethrin, propoxur, and dichlorvos, in Zhejiang Province. Methods. Field strains of house flies were collected from the 12 administrative districts in Zhejiang Province in 2011, 2014, and 2017, respectively. Topical application method was adopted for the bioassays. The probit analysis was used to determine the median lethal doses with the 95% confidence interval, and then the resistance ratio (RR) was calculated. The insecticides resistance in different years and the correlations of the resistance between different insecticides were also analyzed. Results. The resistance of field strains house flies to insecticides in Zhejiang Province was relatively common, especially for permethrin, deltamethrin, and beta-cypermethrin. The reversion of the resistance to dichlorvos was found, and most of the field strains in Zhejiang Province became sensitive to dichlorvos in 2017. Propoxur was much easier to cause very high level of resistance; the Hangzhou strain had the highest RR value more than 1000 in 2014, and five field strains had the RR value more than 100 in 2017. Compared to 2011 and 2014, the resistance of the house flies to propoxur and deltamethrin increased significantly in 2017. The resistance of permethrin, deltamethrin, beta-cypermethrin, and propoxur was significantly correlated with each other, and the resistance of dichlorvos was significantly correlated with beta-cypermethrin. Conclusions. Our results suggested that resistance was existed in permethrin, deltamethrin, beta-cypermethrin, and propoxur in the house flies of Zhejiang Province, while the resistance reversion to dichlorvos was found.


1973 ◽  
Vol 105 (5) ◽  
pp. 709-718 ◽  
Author(s):  
H. G. Wylie

AbstractFemales of Nasonia vitripennis (Walk.) lay a smaller percentage of fertilized (i.e. female) eggs on house fly, Musca domestica L., pupae previously parasitized by their own species, by Muscidifurax zaraptor K. & L., or by Spalangia cameroni Perk. (Hymenoptera: Pteromalidae) than on unparasitized hosts. They respond to changes in the fly pupae associated with death, and in the case of house flies attacked by N. vitripennis, to "venoms" injected at that time or to changes unrelated to death. By not fertilizing eggs that they lay on attacked hosts, the females also conserve sperm, for immature N. vitripennis on previously-attacked fly pupae are usually killed by parasite larvae already present.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249496
Author(s):  
Saad M. Alzahrani

This study was conducted to determine the susceptibility and resistance of some house fly strains of Musca domestica L. to the insect growth regulator insecticides triflumuron and pyriproxyfen in some locations in Riyadh city. Field-collected strains of M. domestica L. from five sites in Riyadh city that represented five slaughterhouse sites where flies spread significantly were tested against triflumuron and pyriproxyfen. Triflumuron LC50 values for the five collected strains ranged from 2.6 to 5.5 ppm, and the resistance factors (RFs) ranged from 13-fold to 27-fold that of the susceptible laboratory strain. Pyriproxyfen LC50 values for the field strains ranged from 0.9 to 1.8 ppm with RFs of 3-fold to 5-fold. These results indicate that pyriproxyfen is an effective insecticide to control house flies and should be used in rotation with other insecticides in the control programs applied by Riyadh municipality.


2018 ◽  
Vol 2 (1) ◽  
pp. 8
Author(s):  
Suriyani Tan ◽  
Machrumnizar Machrumnizar

Muscadomestica (house fly) is an insect that is considered useless by humans although they lived very close to humans. Breeding site of flies in human or animal waste, the rubbish, or unorganic objects that have decayed greatly support their role as mechanical vectors. More than 20 species of flies have been reported as an agent of gastrointestinal diseases. The purpose of this study is to examnine the role of houseflies as mechanical vectors Ascarislumbricoides’seggs.The research sample was 500 house flies (Muscadomestica) captured in the Legok area. Houseflies were trapped by fly trap containing rotten fish meat and then stored at a temperature of 4 degree celcius. The samples were divided into six groups according to the sampling areas, crushed and checked directly by using a light microscope. Ascarislumbricoides eggs are not found in all groups of samples. The study concluded that Muscadomestica is not a mechanical vector of infective eggs of Ascarislumbricoides in Tangerang City, Banten Province.


1985 ◽  
Vol 75 (1) ◽  
pp. 143-158 ◽  
Author(s):  
I. Denholm ◽  
R. M. Sawicki ◽  
A. W. Farnham

AbstractWays in which the bionomics and dynamics of populations of Musca domestica L. can influence the development of insecticide resistance, and how resistance genes spread within and between farms was investigated in a three-year study of the biology and movement of flies on 63 pig-rearing farms in south-eastern England. House-flies survived winter only on 12 ‘overwintering’ farms where they bred in heated pig-rearing houses (‘closed buildings’) throughout the year. In late spring they appeared out doors, and their descendents founded populations on neighbouring ‘summer’ farms where pigs breed only in unheated (‘open’) buildings. There, flies reached peak numbers in August–September and died out by mid-November. Gene flow within and between farms was studied indirectly by mark-release-recapture of colour-marked adults, and directly by monitoring the diffusion of the visible marker gene bwb (brown body) introduced into indigenous house-fly populations. Although movement between open buildings within a farm was unrestricted, dispersal between farms was limited, and gene flow between even adjacent closed buildings was indirect, and required more than one generation. Likewise, indirect and gradual gene flow during summer probably accounted for the similarity in type and frequency of other independent genetic markers of local overwintering populations. Thus closed buildings played a key role in house-fly ecology and population genetics. Unfortunately, control with persistent insecticides in these buildings ensures efficient resistance selection, ultimately resulting in its spread to all pig farms. Less selective control practices are needed at these sites.


Insects ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 47 ◽  
Author(s):  
Dalton Baker ◽  
Steven Rice ◽  
Diana Leemon ◽  
Rosamond Godwin ◽  
Peter James

The control of house flies, Musca domestica (L.), currently relies on the use of chemical insecticide spray and bait formulations. Entomopathogenic fungi, such as Metarhizium anisopliae, may provide an alternative to these products. This study aimed to develop and evaluate a mycoinsecticide bait formulation containing a virulent M. anisopliae isolate. Five M. anisopliae isolates were screened against M. domestica and isolate M16 was selected for bait development. Bait formulations containing a variety of additives, including (Z)-9-tricosene, were tested for their ability to increase fly visitation. A bait formulation containing M. anisopliae and skim milk powder was found to have the highest house fly visitation and was subsequently compared to a conventional chemical bait in an efficacy assay. The chemical bait (0.5% imidacloprid) caused faster mortality than the mycoinsecticide bait, however, similar levels of mortality were achieved by 4–5 days’ post exposure. These results suggest that M. anisopliae mycoinsecticide baits may offer an alternative to conventional chemical insecticides for the control of house flies in suitable areas.


1948 ◽  
Vol 39 (3) ◽  
pp. 339-357 ◽  
Author(s):  
Sonti Dakshinamurty

The study of the common house-fly,Musca domestica, L., has not received the attention it merits by medical entomologists. Although the correlation betweenfly-borne diseasesandclimatic factorshas interested several workers, this correlation has not been satisfactorily explained. An investigation of the influence ofclimatic factorson house-flies was therefore undertaken.House-flies can be reared in the laboratory by a proper choice of the breeding medium and suitable technique. Manures, kitchen refuse and synthetic media may be used but the last mentioned is recommended for the production of a supply of standard insects.M. domesticachooses the lower humidity on each of the humidity gradients, 20–40, 40–60, 60–80 and 80–100 per cent., at a constant temperature of 25°C. The choice is significant for both sexes, and for dry and wet flies, except for dry flies at the range 60–80 per cent.The house-fly chooses 30°C. in temperature gradients of 20–30°C. and 30–40°C. at constant humidity, expressed either in the R.H. or the S.D. scale. It chooses 30°C. with dry air if possible, but with moist air if it must. In a gradient of 33–27°C. where dry air is associated with 33°C. in the S.D. scale in the one case, and 27°C. in the R.H. in the other, it chooses 33°C. or 27°C. according as it coincides with dry air. Dry air as represented by low R.H. or high S.D. did not make any difference to its choice, consequently it is not possible to decide whether house-flies choose by the R.H. scale or the S.D. scale. The activity ofM. domesticato different combinations of temperature and humidity shows maximum activity with high temperature and low humidity, minimum with high temperature and high humidity; while in the case of low temperature combinations with either high or low humidity, activity lies intermediate in degree. High and low temperatures and high and low humidity within themselves also show significant results by the χ2test.The experimental results are explained on physiological grounds and the results obtained in these experiments are compared with those of other workers on similar problems on a variety of insects.The general experience with regard to house-flies in the field is explained in the light of these laboratory findings.For a correct analysis of the behaviour of the house-fly in nature, biological stimuli such as feeding, breeding and resting habits must be considered quantitatively in relation to environmental factors such as temperature, humidity, rainfall and light. The present work forms part of such a study.


Author(s):  
Ebrahim Ahmadi ◽  
Jahangir Khajehali

Background: Insecticide resistance is one of the most important problems associated with the control of Musca domestica, due to the potential of the rapid development of resistance to different chemical insecticides. The present study was carried out to evaluate dichlorvos resistance in the house fly populations collected from central regions of Iran, Isfahan Province and Chaharmahal and Bakhtiari Province, during 2017 to 2019. Methods: Bioassays were carried out using a standard topical application method as well as a fumigation method. The Koohrang population (susceptible) with the lowest LD50 values to dichlorvos was chosen to calculate the resistance ratios (RR). Altered sensitivity of acetylcholinesterase (AChE), a target enzyme for dichlorvos, was investigated. Results: According to the results, very high levels of dichlorvos resistance were observed in the Mobarake population (RR= 80.25-fold by topical application and 33-fold by fumigation bioassay), and Isfahan population (RR= 107.30-fold by topical application and 43-fold by fumigation bioassay) compared to the Koohrang population. Acetylcholinesterase of the Koohrang population was the most sensitive to inhibition by dichlorvos based on the determination of median inhibitory concentration (IC50), but AChE of Mobarake and Isfahan populations were 741.93- and 343.94- fold less sensitive to inhibition. Conclusion: The insensitivity of AChE was possibly involved in dichlorvos resistance in the house fly populations.


2020 ◽  
Vol 24 (3) ◽  
pp. 519-523
Author(s):  
O.J. Soyelu ◽  
B.A. Oluwamakinde ◽  
R.E. Okonji

Insecticidal activities of hexane extracts of leaves and roots of siam weed and vetiver, and roots of neem were assessed against house fly, Musca domestica L. Mortality test was conducted using serial concentrations 20%, 10%, 5% and 2.5% of extracted oils while behavioural orientation of house fly to oil odour, antioviposition effect of oil toward the insects, biochemical reactions in treated flies and fitness of offspring were determined using 20% oil concentration. House fly mortality varied significantly with plant species and part of plant extracted (P < 0.001), concentration applied (P < 0.001) and time post-exposure (P < 0.001). All tested plant extracts showed potential as good control agents with average mortality ranging from 59-74%. However, significantly lower median lethal values (LC50 and LT50) separated vetiver as the most toxic plant against the insect pest. The plant oils repelled house flies (93-100%), reduced the number of larvae that hatched from laid eggs, lowered adult emergence and caused a significant reduction in size and weight of offspring. On the contrary, exposure to plant oils did not alter offspring sex ratio. In comparison to untreated house flies, plant oils induced biochemical stress in poisoned cohorts as evidenced in significant deviation of digestive enzyme (α- and β- amylases, lipase) activity and concentrations of detoxifying enzyme (glutathione-Stransferase), neurochemical enzyme (acetylcholinesterase) and energy metabolism biomolecules (total protein). Implications of obtained results for non-chemical control strategies are discussed.


1959 ◽  
Vol 50 (2) ◽  
pp. 327-332 ◽  
Author(s):  
R. T. Jarman

An experimental laboratory study of the deposition of droplets on dead house-flies (Musca domestica L.) was made, using a spinning-top sprayer to produce a spray of uniformly sized oil droplets and a cascade impactor to measure the concentration of the spray of droplets, which were dyed. The deposits obtained on a dead house-fly and a cascade-impactor slide when these were exposed in turn to a wind of 1 m. per sec. in a wind tunnel were compared colorimetrically, and determinations thus made of the collection efficiency of the flies, defined as the volume of liquid deposited on an object expressed as a percentage of the volume that would have passed through the same cross-section as the object had that not been there.The measured collecting efficiency of a fly varied from about 70 per cent. (droplet dia. 27μ) to about 200 per cent. (droplet dia. 75μ), and was approximately twice that of a sphere with a cross-sectional area twice the projected frontal area of the fly. From theoretical calculations of the filtering effect of different elements of the vegetation, it is concluded that the optimum droplet diameter for deposition on flies in woodland is 20–40μ.


Sign in / Sign up

Export Citation Format

Share Document