Mechanical Properties of Cementitious and Non-Cementitious System After Ageing Tests for Well Abandonment Cementing Operations

2019 ◽  
Author(s):  
Ingrid Ezechiello da Silva ◽  
Vivian Karla Castelo Branco Louback Machado Balthar ◽  
Romildo Dias Toledo Filho ◽  
Gabriella de Medeiros de Sá Cavalcante ◽  
Robert Lucian de Lima dos Santos

The plug and Abandonment (P&A) are the final stage of the life cycle of an oil well. This implies that the plugging material must withstand the chemicals, temperature and well pressure to ensure its long-term integrity. Portland cement is the most used material as a safety barrier in P&A operations. However, the extreme conditions of the well have challenged the mechanical properties of Portland Cement. In this context, the present work aims to identify the adequate systems as permanent plugging material and to characterize them with a qualification process based on international references and experimental validation. Hence, four systems were tested for plug cementing operation with composition variations under pre-defined ageing conditions. Class G Portland cement slurry was used as reference to allow comparison of mechanical properties (compressive strength and tensile strength) between flexible cement paste, a system containing a mixture of Class G Portland Cement with epoxy resin and finally a system with epoxy resin only. Samples containing Class G Portland Cement were cured for 14 days under well bottom conditions (3000 psi and temperature of 174 degrees Fahrenheit) and cured for 14 days at well temperature (using a thermal bath). Samples containing resin were cured for 14 days under well bottom conditions (3000 psi and temperature of 150 degrees Fahrenheit) and cured for 14 days at well temperature (using a thermal bath). Finally, the samples were aged for 60 days in a thermal bath at well temperature and exposed to the brine which is the completion fluid composition which will be above and below in contact with the well barrier in a P & A operation. The results of the compressive strength tests of the samples aged in brine showed tha in some systems tested the reduction of the modulus of elasticity occurred, however, it was also observed the increase of the modulus of elasticity in another system. The same was true of the results of tensile strength tests of aged samples, the increase of rupture loading in some systems and reduction in the other ones were observed. The mechanical tests of the samples before and after ageing were performed to define the best system to be used in a well abandonment operation aiming for long-term integrity.

2015 ◽  
Vol 1088 ◽  
pp. 411-414 ◽  
Author(s):  
Francisco Augusto Zago Marques ◽  
Carlos Eduardo G. da Silva ◽  
André Luis Christoforo ◽  
Francisco Antonio Rocco Lahr ◽  
Túlio Hallak Panzera ◽  
...  

This research evaluated, with the of the analyses of variance (ANOVA), a composite material based on epoxy matrix phase reinforced with Portland cement (CP-II) particles (0%wt [100%wt of resin], 20%wt, 40%wt, 60%wt). The response-variable investigated were modulus of elasticity (E) and compressive strength (S), bulk density (ρB), apparent density (ρA) and porosity (P). The highest values of the modulus of elasticity were provided from the composites manufactured with 40wt% of cement addition. The inclusion of 60% of cement implies in a reduction in the mechanical properties when compared with the results of the composite manufactured with 40% of cement. For the physical properties, the gradually inclusion of cement provides increasing in the density of the composites, and reduce the porosity of the materials manufactured.


2008 ◽  
Vol 1 (2) ◽  
pp. 113-120 ◽  
Author(s):  
A. C. Marques ◽  
J. L. Akasaki ◽  
A. P. M. Trigo ◽  
M. L. Marques

In this work it was evaluated the influence tire rubber addition in mortars in order to replace part of the sand (12% by volume). It was also intended to verify if the tire rubber treatment with NaOH saturated aqueous solution causes interference on the mechanical properties of the mixture. Compressive strength, splitting tensile strength, water absorption, modulus of elasticity, and flow test were made in specimens of 5cmx10cm and the tests were carried out to 7, 28, 56, 90, and 180 days. The results show reduction on mechanical properties values after addition of tire rubber and decrease of the workability. It was also observed that the tire rubber treatment does not cause any alteration on the results compared to the rubber without treatment.


2012 ◽  
Vol 17 (6) ◽  
pp. 154-159 ◽  
Author(s):  
Marcel M. Farret ◽  
Eduardo Martinelli de Lima ◽  
Eduardo Gonçalves Mota ◽  
Hugo Mitsuo S. Oshima ◽  
Gabriela Maguilnik ◽  
...  

OBJECTIVE: To evaluate the mechanical properties of three glass ionomers cements (GICs) used for band cementation in Orthodontics. METHODS: Two conventional glass ionomers (Ketac Cem Easy mix/3M-ESPE and Meron/Voco) and one resin modified glass ionomer (Multi-cure Glass ionomer/3M-Unitek) were selected. For the compressive strength and diametral tensile strength tests, 12 specimens were made of each material. For the microhardness test 15 specimens were made of each material and for the shear bond strength tests 45 bovine permanent incisors were used mounted in a self-cure acrylic resin. Then, band segments with a welded bracket were cemented on the buccal surface of the crowns. For the mechanical tests of compressive and diametral tensile strength and shear bond strength a universal testing machine was used with a crosshead speed of 1,0 mm/min and for the Vickers microhardness analysis tests a Microdurometer was used with 200 g of load during 15 seconds. The results were submitted to statistical analysis through ANOVA complemented by Tukey's test at a significance level of 5%. RESULTS: The results shown that the Multi-Cure Glass Ionomer presented higher diametral tensile strength (p < 0.01) and compressive strength greater than conventional GICs (p = 0.08). Moreover, Ketac Cem showed significant less microhardness (p < 0.01). CONCLUSION: The resin-modified glass ionomer cement showed high mechanical properties, compared to the conventional glass ionomer cements, which had few differences between them.


1994 ◽  
Vol 370 ◽  
Author(s):  
Manouchehr Hassanzadeh

AbstractThis study has determined the fracture mechanical properties of 9 types of rock, namely fine-, medium- and coarse-grained granites, gneiss, quartzite, diabase, gabbro, and fine- and coarse-grained limestones. Test results show among other things that quartzite has the highest compressive strength and fracture energy, while diabase has the highest splitting tensile strength and modulus of elasticity. Furthermore, the strength and fracture energy of the interfacial zone between the rocks and 6 different mortars have been determined. The results showed that, in this investigation, the mortar/rock interfaces are in most cases weaker than both mortars and rocks.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Truc T. Ngo ◽  
James G. Kohl ◽  
Tawni Paradise ◽  
Autumn Khalily ◽  
Duane L. Simonson

Two different thermoset biocomposite systems are experimented in this study with the hope to improve their mechanical properties. Fiberglass and hemp, in form of fabrics, are used to reinforce the thermoset polymer matrix, which includes a traditional epoxy resin and a linseed oil-based bioresin (UVL). The fiber/polymer matrix interface is modified using two different approaches: adding a plant-based oil (pine or linseed) to the polymer matrix or coating the fibers with 3-(aminopropyl)triethoxysilane (APTES) prior to integrating them into the polymer matrix. Epoxy resin is cured using an amine-based initiator, whereas UVL resin is cured under ultraviolet light. Results show that hemp fibers with APTES prime coat used in either epoxy or UVL matrix exhibit some potential improvements in the composite’s mechanical properties including tensile strength, modulus of elasticity, and ductility. It is also found that adding oil to the epoxy matrix reinforced with fiberglass mostly improves the material’s modulus of elasticity while maintaining its tensile strength and ductility. However, adding oil to the epoxy matrix reinforced with hemp doubles the material’s ductility while slightly reducing its tensile strength and modulus of elasticity.


2013 ◽  
Vol 372 ◽  
pp. 231-234
Author(s):  
Jeong Eun Kim ◽  
Wan Shin Park ◽  
Nam Yong Eom ◽  
Sun Woong Kim ◽  
Do Gyeum Kim ◽  
...  

In this study, some experimental investigations on the development of mechanical properties with age of high performance concrete (HPC) incorporated with blast furnace slag with fly ash or silica fume have been reported. Four different blended HPC were prepared in 0.40 water-binder ratio. At every four mixtures, the compressive strength, splitting tensile strength and modulus of elasticity at 7 and 28 days have been observed for HPC developments. Consequently, only replacement of silica fume significantly increases the mechanical properties in terms of compressive strength, splitting tensile strength and modulus of elasticity.


2014 ◽  
Vol 7 (1) ◽  
pp. 94-108
Author(s):  
Amer Hameed Majeed ◽  
Mohammed S. Hamza ◽  
Hayder Raheem Kareem

The study covers the effect of nanocarbon black particles (N220) on some important mechanical properties of epoxy reinforced with it [carbon black nanoparticles]. The nanocomposites were prepared with (1 to 10 wt. %) of carbon black nanoparticles using ultrasonic wave bath machine dispersion method. The results had shown that the tensile strength , tensile modulus of elasticity, flexural strength and impact strength are improved by (24.02%,7.93%,17.3% and 6% ) respectively at 2wt % .The compressive strength and hardness are improved by (44.4%, 12%) at 4wt%.


Author(s):  
Sergey Savotchenko ◽  
Ekaterina Kovaleva

We study experimentally the influence of mass fraction of L-20 hardener cold cure on mechanical properties of epoxy diane resin ED-20. We measure the hardness, tensile strength, bending strength and impact strength of resin at different values of the hardener mass fraction. It is found that the ratio hardener mass fraction of 1:0.9 leads to the highest values of the hardness, tensile strength, compressive strength and bending strength. The impact viscosity is maximum at the ratio hardener mass fraction of 1:0.8. The optimal ratio of a non-toxic safe hardener to the resin is derived based on obtained mechanical characteristics.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Yubo Jiao ◽  
Hanbing Liu ◽  
Xianqiang Wang ◽  
Yuwei Zhang ◽  
Guobao Luo ◽  
...  

Static and dynamic mechanical properties of concrete are affected by temperature effect in practice. Therefore, it is necessary to investigate the corresponding influence law and mechanism. This paper demonstrates the variation of mechanical properties of concrete at temperatures from −20°C to 60°C. Temperature effects on cube compressive strength, splitting tensile strength, prism compressive strength, modulus of elasticity, and frequency are conducted and discussed. The results indicate that static mechanical properties such as compressive strength (cube and prism), splitting tensile strength, and modulus of elasticity have highly linear negative correlation with temperature; this law is also applied to the first order frequency of concrete slab. The coupling effect of temperature and damage on change rate of frequency reveals that temperature effect cannot be ignored in damage identification of structure. Mechanism analysis shows that variation of elastic modulus of concrete caused by temperature is the primary reason for the change of frequency.


2008 ◽  
Vol 5 (s1) ◽  
pp. S1015-S1020 ◽  
Author(s):  
B. S. Kaith ◽  
Aashish Chauhan

Phenol: formaldehyde ratio was varied in the synthesis of phenol- formaldehyde resin and used to prepare the composites. These composites were then evaluated for their mechanical strength on the basis of tensile strength, compressive strength and wear resistance. Composite with better strength was characterized by IR, SEM, XRD, TGA/DTA and further studies were carried out for its physico-chemical and mechanical properties like viscosity, modulus of rupture (MOR), modulus of elasticity (MOE) and stress at the limit of proportionality (SP)etc.


Sign in / Sign up

Export Citation Format

Share Document