Consistency Under Applied Pressure Test CAPT - A Novel Method for Evaluating Pressure Effect on the Gel Time of Thermosetting Resin

2021 ◽  
Author(s):  
Dingwei Zhu ◽  
Svein Normann ◽  
Minli Xie ◽  
Jonny Haugen

Abstract Thermosetting resin is gaining more acceptances in Plug and Abandonment due to its excellent mechanical properties after set and ability for placement in locations cement cannot reach. A thorough understanding of its curing behavior such as gel time is essential to ensure safe placement and a good seal. This paper investigates the pressure-sensitive gelation behavior of polymer resin under in-situ conditions, and the pressure effect on the gel time of thermosetting resin was evaluated. An innovative assessment methodology named CAPT (Consistency under Applied Pressure Test) was created to assess the curing process of thermoset resins in a pressurized consistometer. A series of resin samples were tested at temperatures ranging from ambient to 120°C with applied pressures up to 10,000 psi. The consistency was initially used to indicate the gel structure development of the resin while it was gelling. Based on the consistency data, the relationship between applied pressure and gel time of resins was studied and a new approach of modeling the curing process with the influence factor of pressure was proposed. The primary observation was the confirmation that the gelation process of thermosetting resin under applied pressure was faster than that under atmospheric pressure. However, the gel time had big variations. The pressure sensitivity mainly depended on the initiators and it was only partly dependent on the temperature. There was a threshold value for the pressure effect on the gel time. Below the threshold, the gel time only decreased by around 5%. Above the threshold, the pressure effect was much larger where the gel time decreased by 20% - 30%. This could be mainly attributed to the thermodynamic effect caused by pressure accelerating the polymerization process, resulting in a shorter gel time. Meanwhile, these results help explain why the curing behavior of thermosetting resin placed underground where high pressure is encountered often differs from the laboratory-predicted performance. Besides indicating the relative strength development, consistency analysis could also be used to assess the pressure effect on the gelation process of a resin sample in down-hole operations with applied pressures. Thus, CAPT would be more suitable than a conventional reactivity test to propose a new approach of modeling the gel time of thermosetting resin systems with the influence factor of pressure. CAPT is a novel method to accurately evaluate the curing process of thermosetting resin and indicate its relative strength development. This helps engineers reach a good balance between designing proper operations and preserving mechanical properties in the plug and abandonment process.

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2263
Author(s):  
Haileleol Tibebu ◽  
Jamie Roche ◽  
Varuna De Silva ◽  
Ahmet Kondoz

Creating an accurate awareness of the environment using laser scanners is a major challenge in robotics and auto industries. LiDAR (light detection and ranging) is a powerful laser scanner that provides a detailed map of the environment. However, efficient and accurate mapping of the environment is yet to be obtained, as most modern environments contain glass, which is invisible to LiDAR. In this paper, a method to effectively detect and localise glass using LiDAR sensors is proposed. This new approach is based on the variation of range measurements between neighbouring point clouds, using a two-step filter. The first filter examines the change in the standard deviation of neighbouring clouds. The second filter uses a change in distance and intensity between neighbouring pules to refine the results from the first filter and estimate the glass profile width before updating the cartesian coordinate and range measurement by the instrument. Test results demonstrate the detection and localisation of glass and the elimination of errors caused by glass in occupancy grid maps. This novel method detects frameless glass from a long range and does not depend on intensity peak with an accuracy of 96.2%.


2017 ◽  
Vol 89 (1) ◽  
pp. 161-171 ◽  
Author(s):  
Beata Podkościelna ◽  
Marta Goliszek ◽  
Olena Sevastyanova

AbstractIn this study, a novel method for the synthesis of hybrid, porous microspheres, including divinylbenzene (DVB), triethoxyvinylsilane (TEVS) and methacrylated lignin (L-Met), is presented. The methacrylic derivatives of kraft lignin were obtained by reaction with methacryloyl chloride according to a new experimental protocol. The course of the modification of lignin was confirmed by attenuated total reflectance (ATR-FTIR) and nuclear magnetic resonance (NMR) spectroscopy. The emulsion-suspension polymerization method was employed to obtain copolymers of DVD, TEVS and L-Met in spherical forms. The porous structures and morphologies of the obtained lignin-containing functionalized microspheres were investigated by low-temperature nitrogen adsorption data and scanning electron microscopy (SEM). The microspheres are demonstrated to be mesoporous materials with specific surface areas in the range of 430–520 m2/g. The effects of the lignin component on the porous structure, shape, swelling and thermal properties of the microspheres were evaluated.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1976 ◽  
Author(s):  
Youqing Chen ◽  
Makoto Naoi ◽  
Yuto Tomonaga ◽  
Takashi Akai ◽  
Hiroyuki Tanaka ◽  
...  

A better understanding of the process of stimulation by hydraulic fracturing in shale gas and oil reservoirs is necessary for improving resource productivity. However, direct observation of hydraulically stimulated regions including induced fractures has been difficult. In the present study, we develop a new approach for directly visualizing regions of shale specimens impregnated by fluid during hydraulic fracturing. The proposed laboratory method uses a thermosetting resin mixed with a fluorescent substance as a fracturing fluid. After fracturing, the resin is fixed within the specimens by heating, and the cut sections are then observed under ultraviolet light. Based on brightness, we can then distinguish induced fractures and their surrounding regions impregnated by the fluid from other regions not reached by the fluid. Polarization microscope observation clearly reveals the detailed structures of tortuous or branched fractures on the micron scale and interactions between fractures and constituent minerals. The proposed experimental and observation method is useful for understanding the process of stimulation by hydraulic fracturing and its relationship with microscopic rock characteristics, which is important for fracturing design optimization in shale gas and oil resource development.


2019 ◽  
Author(s):  
Espen Johan Magnussen ◽  
Vidar Haugen ◽  
Saman Sarbaz ◽  
Ole Edvind Eddie Karlsen ◽  
Lars Bjarne Nordaas ◽  
...  

Author(s):  
Lajmi Fatma ◽  
Jalel Ghabi ◽  
Hedi Dhouibi

In this article, the authors propose a new approach for modelling and failure analysis by combining the graphical representation provided by Petri nets and fuzzy logic. The graphical method is used for describing the relationship between conditions and events. The use of Petri nets in failure analysis enables replacing logic gate functions in fault trees. The Fuzzy logic technique allows natural language descriptions of process entities as well as an if-then rule-based definition of production. In addition, this study devises an alternative, a trapezoidal graph method in order to account for failure scenarios. Examples validating this novel method in dealing with failure analysis are also provided.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4999
Author(s):  
Lanh Si Ho ◽  
Kenichiro Nakarai ◽  
Kenta Eguchi ◽  
Yuko Ogawa

To improve the strength of cement-treated sand effectively, the use of various cement types was investigated at different curing temperatures and compared with the results obtained from similar mortars at higher cement contents. The compressive strengths of cement-treated sand specimens that contained high early-strength Portland cement (HPC) cured at elevated and normal temperatures were found to be higher than those of specimens that contained ordinary Portland cement (OPC) and moderate heat Portland cement at both early and later ages. At 3 days, the compressive strength of the HPC-treated sand specimen, normalized with respect to that of the OPC under normal conditions, is nearly twice the corresponding value for the HPC mortar specimens with water-to-cement ratio of 50%. At 28 days, the normalized value for HPC-treated sand is approximately 1.5 times higher than that of mortar, with a value of 50%. This indicates that the use of HPC contributed more to the strength development of the cement-treated sand than to that of the mortar, and the effects of HPC at an early age were higher than those at a later age. These trends were explained by the larger quantity of chemically bound water observed in the specimens that contained HPC, as a result of their greater alite contents and porosities, in cement-treated sand. The findings of this study can be used to ensure the desired strength development of cement-treated soils by considering both the curing temperature and cement type. Furthermore, they suggested a novel method for producing a high internal temperature for promoting the strength development of cement-treated soils.


2013 ◽  
Vol 20 (1) ◽  
pp. 77-86 ◽  
Author(s):  
Marek Moszynski ◽  
Andrzej Chybicki ◽  
Marcin Kulawiak ◽  
Zbigniew Lubniewski

Abstract Over the past few years considerable advances in sonar technology, spatial positioning capabilities and computer processing power have lead to significant improvements in mapping, imaging and technologies of seafloor exploration. Recently, modern multibeam echosounder systems (MBES) capable of recording backscatter data for the whole water column, not just for the seabed, have become available thus providing data allowing for visualization and analysis of objects other than the seabed such as single fish, fish schools or pollution. Unlike bathymetric sonars, which only capture the seafloor, multibeam systems produce very large amounts of data during surveys. Because of this, storing the data collected during hydrographic or scientific cruises becomes a crucial problem. In this context, the paper proposes a new approach for efficient reduction and storage of MBES records. The results of a sample implementation of the algorithm being tested on several different sets of MBES data are also discussed.


2011 ◽  
Vol 250-253 ◽  
pp. 262-265
Author(s):  
Jun Zhe Liu ◽  
Guo Liang Zhang ◽  
Jian Bin Chen ◽  
Zhi Min He

This paper mainly explain and expounded folding compressive strength of the different types of sea sand mortar , fly ash to the sea sand concretes mortar intensity influence as well as the chloride ion content to the sea sand concretes mortar intensity influence. The pulverized fly ash has the postponement function to the sea sand concretes early strength, the chloride ion has the promoter action to the sea sand concretes early strength. 20% pulverized fly ash be good to the sea sand concretes long-term strength development influence, can achieve the goal which enhances the sea sand concretes the long-term strength . The chloride ion is greater to the concretes early strength influence, especially in previous 3 days. Along with the time development, the chloride ion influence weakens, but the pulverized fly ash enlarges to the concretes intensity's influence factor. A two-phase arrived, the final concrete strength values close to each other.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Keun-Hyeok Yang ◽  
Jae-Sung Mun ◽  
Myung-Sug Cho

This study examined the relative strength-maturity relationship of high-strength concrete (HSC) specifically developed for nuclear facility structures while considering the economic efficiency and durability of the concrete. Two types of mixture proportions with water-to-binder ratios of 0.4 and 0.28 were tested under different temperature histories including (1) isothermal curing conditions of 5°C, 20°C, and 40°C and (2) terraced temperature histories of 20°C for an initial age of individual 1, 3, or 7 days and a constant temperature of 5°C for the subsequent ages. On the basis of the test results, the traditional maturity function of an equivalent age was modified to consider the offset maturity and the insignificance of subsequent curing temperature after an age of 3 days on later strength of concrete. To determine the key parameters in the maturity function, the setting behavior, apparent activation energy, and rate constant of the prepared mixtures were also measured. This study reveals that the compressive strength development of HSC cured at the reference temperature for an early age of 3 days is insignificantly affected by the subsequent curing temperature histories. The proposed maturity approach with the modified equivalent age accurately predicts the strength development of HSC.


2013 ◽  
Vol 336-338 ◽  
pp. 1449-1454
Author(s):  
Jing Shi ◽  
Qi Huang ◽  
Zheng Tao Jiang

The wide-area protection technology is considered to apply in construction of smart grid, which offers new challenge to verifying work for secondary system. This paper describes a new method for onsite commissioning of wide-area power grid. It can accomplish coordination tests for protection devices in different areas based on numerical simulation and wireless commutation technology. Because structure of power grid is too complex to calculate results of electromagnetic transient efficiently. A new approach of simulation is shown in the paper, which uses FDNE circuit to replace external system. And an example of test is offered. The simulation result indicates that electromagnetic transient computation with FDNE can be satisfied with debug work for occurrence chains in smart grid.


Sign in / Sign up

Export Citation Format

Share Document