Hydrophobic Dielectric Sealing Material Enabled Highly Reliable Electrical Connectors for Downhole Data and Power Transmission Application

2021 ◽  
Author(s):  
Hua Xia ◽  
Nelson Settles ◽  
David DeWire

Abstract A high-strength dielectric sealing material has been developed for sealing electrical connectors, feedthroughs, bulkheads, and interconnectors. X-ray diffraction analyses have identified that the microstructures of the sealing material could be of amorphous and α-phase mixed morphology, α+β mixed phase, and β-phase dominated tetrahedral microstructure, which primarily depend upon the material processing temperature. The electrical insulation resistance of the β-phase dominated sealing material have nearly two times higher than that of α+β mixed phase sealing material. Both β-phase dominated and α+β mixed phase sealing materials have shown water repelling properties, while amorphous glass phase has shown hydrophilic properties. If a 5,000MΩ insulation resistance is also regarded as baseline for a downhole electrical connector, the maximum operation temperature of α+β mixed phase sealing materials is around 240°C while that of the β-phase dominated sealing material can be up to 300°C. Furthermore, a thermo-mechanical modeling has been developed to quantify if a designed electrical connector has sufficient reliability in the hostile wellbore or downhole environments. The temperature- and pressure-dependent seal compression have suggested that the temperature-related safety factor should be chosen in the range from 2.0 to 5.0 while the pressure-related safety factor should be chosen in the range from 1.5 to 2.0 to ensure 10-20 years electrical connector downhole operating reliability. The qualification tests from prototyped electrical connectors, under 260°C/32,000PSI simulated water-fluid based conditions, have demonstrated that such high-strength sealing material sealed electrical connector could be integrated with logging while drilling (LWD) or/and measurement while drilling (MWD) tools for providing long-term reliable signal, data, and electrical power transmission services, regardless of a water-based or moisture-rich wellbore or/and downhole environment.

2021 ◽  
Vol 1036 ◽  
pp. 185-195
Author(s):  
Zi Hao Chen ◽  
Qiang Gu ◽  
Wei Kui Ma ◽  
Guo Qi Liu

Compared with traditional ceramics, Si3N4 ceramics have the characteristics of high theoretical thermal conductivity, high thermal shock resistance, high oxidation resistance, high strength, and strong current carrying capacity. It is a potential high-speed circuit and high-power device for heat dissipation and heat dissipation. Sealing material. For applications in 5these fields, β-Si3N4 with a relatively stable structure and high thermal conductivity is an ideal material. However, β-Si3N4 powder is difficult to sinter as a raw material. Therefore, the prepared Si3N4 generally has a low density, and there are various defects in the crystal. The existence of these defects will cause interference and scattering of heat in the transfer process. Limits the application of β-Si3N4 ceramics. Studies have shown that the introduction of different additives can form a liquid phase at high temperatures, which can effectively reduce the firing temperature of the sample and increase the density. At the same time, it can also remove lattice oxygen, weaken the intercrystalline phase, and promote the α→β phase transition. Thereby improving the thermal conductivity and sintering performance of Si3N4 ceramics. Therefore, this article reviews the types of additives and their effects on the properties of Si3N4 ceramics and their mechanism. Trying to find an additive system for the preparation of high thermal conductivity Si3N4 ceramics with excellent comprehensive performance, hoping to provide help for the work and researchers engaged in the research on the thermal conductivity of Si3N4 ceramics.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 385
Author(s):  
Igor Smojver ◽  
Marko Vuletić ◽  
Dražena Gerbl ◽  
Ana Budimir ◽  
Mato Sušić ◽  
...  

The microenvironment of the oral cavity is altered when an implant, a biocompatible foreign body, is inserted into the mouth. Bacteria settle in the tissues in and around the implant due to the passage of microorganisms through the microgap at the connection of the implant and prosthetic abutment. To prevent colonization of the implant by microorganisms, one idea is to use sealing and antimicrobial materials to decontaminate the implant–abutment interface and close the microgap. The purpose of this study is to evaluate the antimicrobial efficacy and permeability of different types of sealing materials at the implant–abutment interface, under static conditions. Three different sealing material (GapSeal gel, Oxysafe gel and Flow.sil) were used for sealing the implant–abutment interfaces in 60 titanium dental implants, which were first contaminated with a solution containing Staphylococcus aureus and Candida albicans for 14 days under an aerobic condition. Results showed that a complete seal against bacterial infection was not formed at the implant–abutment interface, while for fungal infections, only GapSeal material helped to prevent microleakage. Findings of this in vitro study reported that application of sealing material before abutment connection may reduce peri-implant bacterial and fungal population compared with the interface without sealing material.


2016 ◽  
Vol 258 ◽  
pp. 501-505
Author(s):  
Alice Chlupová ◽  
Milan Heczko ◽  
Karel Obrtlík ◽  
Přemysl Beran ◽  
Tomáš Kruml

Two γ-based TiAl alloys with 7 at.% of Nb, alloyed with 2 at.% Mo and 0.5 at.% C, were studied. A heat treatment leading to very fine lamellar microstructure was applied on both alloys. Microstructure after the heat treatment was described and mechanical properties including fatigue behaviour were measured. The as-received material alloyed with C possesses high strength and very limited ductility, especially at RT. After application of selected heat treatment it becomes even more brittle; therefore, this process could be considered as not appropriate for this alloy. On the contrary, in the case of Mo alloyed material, both strength and ductility are improved by the heat treatment at RT and usual working temperature (~750 °C). Presence of the β phase is responsible for this effect. The selected heat treatment thus can be an alternative for this alloy to other thermomechanical treatments as high temperature forging.


2019 ◽  
Vol 16 (3) ◽  
pp. 141-148
Author(s):  
Hua Xia ◽  
Nelson Settles ◽  
David DeWire

Abstract A bismuth oxide–based multicomponent glass system, xH3BO3-yBi2O3-(1-x-y-δ)MO-δ· rare earth oxides (REOs) with MO = TiO2, BaO, ZnO, Fe2O3, etc., and lanthanum series–based REOs, for making downhole high-pressure and high-temperature electrical feedthrough package has been developed using high-temperature melt-quenching and sintering technologies. By properly controlling phase structures in material-manufacturing processes, the obtained sealing materials have shown moisture-resistant properties in their monoclinic and tetragonal mixed phase structures but strongly hydrophobic properties in their covalent bond tetragonal phase. Sealed electrical feedthrough packages have been evaluated under boiling water immersion and 200°C/30,000 PSI water-fluid–simulated downhole harsh environments. The post electrical insulation measurement has demonstrated to be greater than 1.0 × 1014 Ω electrical resistance. This article will show that such a high–bonding strength and high–insulation strength sealing material could be used to seal electrical feed-throughs and connectors for 300°C/30,000 PSI downhole and subsea wireline, logging while drilling, and measurement while drilling tools' signal, data, and electrical power transmissions.


Author(s):  
John R. Hoyes

With the benefit of hindsight some of the initial non-asbestos offerings were doomed to be commercial failures and since then evolution, in the true Darwinian “survival of the fittest” sense, has resulted in the demise of those offerings. In parallel with this process of evolution, the sealing material testing tools that are available have improved. Consequently, the relationship between a material’s contents, its structure, test data and its service potential is far better understood than in previous times. This improved understanding has brought, and will continue to bring, enhanced performance benefits to the end user and increased security against unplanned shut down due to service failures. This paper reviews the evolution process, highlights the classes of materials that have proven to be successful and tries to indicate why, in terms of the properties of the material, they have been successful. The salient features of the content and structure of these materials are also discussed. The paper also speculates about the way in which further consolidation of the range of sealing materials may come about as the process of evolution, driven by cost, performance and environment pressures, continues.


2013 ◽  
Vol 747-748 ◽  
pp. 38-43 ◽  
Author(s):  
Li Hua Chai ◽  
Liang Yang ◽  
Jian Peng Zhang ◽  
Zhi Yong Zhang ◽  
Lai Qi Zhang ◽  
...  

High Nb containing TiAl alloys have been investigated traditionally as potential high temperature structural materials because of their high strength, good oxidation and creep resistance. However, the poor ductility and fracture toughness at room temperature limit their application, which could be improved by controlling microstructure to get refine and homogeneous fully lamellar structure. In this study, a high Nb containing TiAl alloy alloying Mn, B and Y with refined microstructure was produced. The solidification path was analyzed by DSC and SEM microstructure of the alloy was observed, after heating at a certain temperature for 1-24hrs and then quenching in water. The dissolution of β phase was also investigated. The results showed that the β phase could decompose only by heating in single β or near α phase field.


2015 ◽  
Vol 227 ◽  
pp. 425-428 ◽  
Author(s):  
Kamil Dychtoń ◽  
Paweł Rokicki ◽  
Andrzej Nowotnik ◽  
Marcin Drajewicz ◽  
Jan Sieniawski

Gears, due to their complex shape, carried load and required accuracy are ones of most complex aircraft engine parts. Single tooth damage usually breaks the power transmission and causes failure of the entire gear system. Adequate sustainability and guarantees of transmission is therefore a condition for secure operation of whole device. Particularly high requirements for reliability are put to transmissions used in the aerospace industry. Due to the loads which are transmitted through the gears, the materials used by the manufacturer must have not only high strength but also show the abrasion resistance of the surface layer and the ductility of the core. Thermo-chemical treatment of industrial gears is a fundamental process, which gives them adequate mechanical properties regarding loads they carry and the surface conditions of work. The most promising method in the discussed field is vacuum carburizing, which by its specification of work significantly reduce the emission of CO2and the duration of the process, without reducing the quality of the final product. The main aim of the paper is to present criteria for selection of carburizing parameters (mainly temperature increase) as a part of thermo-chemical treatment process performed using vacuum methods. Proper (higher to compare with conventional methods) carburizing process temperature is crucial in programming of carbon diffusion process meaning in process time and final carburized layer characteristics as carbon profile and homogeneity of the carburized layer.


Soft Matter ◽  
2017 ◽  
Vol 13 (42) ◽  
pp. 7760-7770 ◽  
Author(s):  
Avinash Tiwari ◽  
Sergey N. Shubin ◽  
Ben Alcock ◽  
Alexander B. Freidin ◽  
Brede Thorkildsen ◽  
...  

The feasibility of microencapsulated phase change material (MEPCM) as filler in a rubber sealing material to improve sealing under transient cooling (in a so-called blowdown scenario) is investigated here.


Sign in / Sign up

Export Citation Format

Share Document