Modeling Thermal Behavior of System-in-Package with Dynamic Compact Model

2005 ◽  
Vol 2 (1) ◽  
pp. 64-71
Author(s):  
Kimmo Kaija ◽  
Pekka Heino ◽  
Eero O. Ristolainen

Integrating more functionality into smaller size increases the heat dissipation density and emphasizes the need for thermal simulations and accurate thermal models. With a compact thermal model (CTM) the dynamic and steady state thermal behavior of a package with several heat dissipating dice can be modeled. The optimization of the model's parameters requires a properly defined cost function. In this paper a two-phase optimization routine was used to find simultaneously good capacitance and resistance values. The accuracy of the model was improved when effective surface areas defined the convections of a CTM. Parameter optimization in time domain, for variable thermal load and nonlinear system, was tested and found accurate, but time consuming.

2016 ◽  
Vol 138 (7) ◽  
Author(s):  
Andreia F. S. Genaro ◽  
Ezio C. Garcia ◽  
Issamu Muraoka ◽  
Kevin E. de Conde

This paper presents results of the research investigation regarding the causes for temperature variation of the SCD-1 (data-collection satellite) by analyzing its thermal behavior evolution throughout 13 years in orbit. SCD-1, the first satellite designed and built in Brazil, was launched in 1993 and is still in operation. A mathematical model has been developed to simulate thermal behavior of SCD-1 in orbit, which was used as a working tool during project design phase, and is presented here. Temperatures of SCD-1 in orbit have been monitored and recorded in the Control and Tracking Center (São José dos Campos, SP, Brazil) since its launch. An analysis carried out at the mission’s beginning showed that all the temperatures were within the ranges predicted in model. Over the years, the battery, which is the most temperature-sensitive equipment in the satellite, had an increase in temperature approaching upper limit. A method has been developed to investigate the causes of this upswing in which an optimization routine linked to the mathematical model corrects a selected set of parameters in order to adjust the theoretical temperature values to the experimental values. By means of this methodology, data from SCD-1 were analyzed from 1995 to 2005 period and it was concluded that the rise in temperature was caused by an increase in internal battery heat dissipation and absorptivity in solar spectrum of some of the external satellite shielding, both consequences of a long-term degradation.


Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 447
Author(s):  
Taewoo Kang ◽  
Seongyun Park ◽  
Pyeong-Yeon Lee ◽  
In-Ho Cho ◽  
Kisoo Yoo ◽  
...  

In this study, the thermal behavior of a 1S18P battery pack is examined based on the power demand during train propulsion between two stations. The proposed thermal prediction model is classified into Joules heating with equivalent resistance, reversible heat, and heat dissipation. The equivalent resistances are determined by 5% of the state of charge intervals using the hybrid pulse power characterization test. The power demand profile during train propulsion between two stations is provided by the Korea Railroad Research Institute. An experiment is conducted to examine the 1S18P battery pack thermal behavior during the propulsion between two stations. A comparison of the simulation and experiment results validated the proposed thermal model.


2003 ◽  
Vol 125 (1) ◽  
pp. 103-109 ◽  
Author(s):  
C. Ramaswamy ◽  
Y. Joshi ◽  
W. Nakayama ◽  
W. B. Johnson

The current study involves two-phase cooling from enhanced structures whose dimensions have been changed systematically using microfabrication techniques. The aim is to optimize the dimensions to maximize the heat transfer. The enhanced structure used in this study consists of a stacked network of interconnecting channels making it highly porous. The effect of varying the pore size, pitch and height on the boiling performance was studied, with fluorocarbon FC-72 as the working fluid. While most of the previous studies on the mechanism of enhanced nucleate boiling have focused on a small range of wall superheats (0–4 K), the present study covers a wider range (as high as 30 K). A larger pore and smaller pitch resulted in higher heat dissipation at all heat fluxes. The effect of stacking multiple layers showed a proportional increase in heat dissipation (with additional layers) in a certain range of wall superheat values only. In the wall superheat range 8–13 K, no appreciable difference was observed between a single layer structure and a three layer structure. A fin effect combined with change in the boiling phenomenon within the sub-surface layers is proposed to explain this effect.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3634
Author(s):  
Grzegorz Czerwiński ◽  
Jerzy Wołoszyn

With the increasing trend toward the miniaturization of electronic devices, the issue of heat dissipation becomes essential. The use of phase changes in a two-phase closed thermosyphon (TPCT) enables a significant reduction in the heat generated even at high temperatures. In this paper, we propose a modification of the evaporation–condensation model implemented in ANSYS Fluent. The modification was to manipulate the value of the mass transfer time relaxation parameter for evaporation and condensation. The developed model in the form of a UDF script allowed the introduction of additional source equations, and the obtained solution is compared with the results available in the literature. The variable value of the mass transfer time relaxation parameter during condensation rc depending on the density of the liquid and vapour phase was taken into account in the calculations. However, compared to previous numerical studies, more accurate modelling of the phase change phenomenon of the medium in the thermosyphon was possible by adopting a mass transfer time relaxation parameter during evaporation re = 1. The assumption of ten-fold higher values resulted in overestimated temperature values in all sections of the thermosyphon. Hence, the coefficient re should be selected individually depending on the case under study. A too large value may cause difficulties in obtaining the convergence of solutions, which, in the case of numerical grids with many elements (especially three-dimensional), significantly increases the computation time.


Machines ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 9
Author(s):  
Svenja Kalt ◽  
Karl Ludwig Stolle ◽  
Philipp Neuhaus ◽  
Thomas Herrmann ◽  
Alexander Koch ◽  
...  

The consideration of the thermal behavior of electric machines is becoming increasingly important in the machine design for electric vehicles due to the adaptation to more dynamic operating points compared to stationary applications. Whereas, the dependency of machine efficiency on thermal behavior is caused due to the impact of temperature on the resulting loss types. This leads to a shift of efficiency areas in the efficiency diagram of electric machines and has a significant impact on the maximum load capability and an impact on the cycle efficiency during operation, resulting in a reduction in the overall range of the electric vehicle. Therefore, this article aims at analyzing the thermal load limits of induction machines in regard to actual operation using measured driving data of battery electric vehicles. For this, a thermal model is implemented using MATLAB® and investigations to the sensitivity of model parameters as well as analysis of the continuous load capacity, thermal load and efficiency in driving cycles under changing boundary conditions are conducted.


2021 ◽  
pp. 117286
Author(s):  
Yunhong Shi ◽  
Seyedmahmoodreza allahyari ◽  
S. Mohammad Sajadi ◽  
Mashhour A. Alazwari ◽  
Payam Firouzi ◽  
...  

Author(s):  
Jimmy Chuang ◽  
Jin Yang ◽  
David Shia ◽  
Y L Li

Abstract In order to meet increasing performance demand from high-performance computing (HPC) and edge computing, thermal design power (TDP) of CPU and GPU needs to increase. This creates thermal challenge to corresponding electronic packages with respect to heat dissipation. In order to address this challenge, two-phase immersion cooling is gaining attention as its primary mode of heat of removal is via liquid-to-vapor phase change, which can occur at relatively low and constant temperatures. In this paper, integrated heat spreader (IHS) with boiling enhancement features is proposed. 3D metal printing and metal injection molding (MIM) are the two approaches used to manufacture the new IHS. The resultant IHS with enhancement features are used to build test vehicles (TV) by following standard electronic package assembly process. Experimental results demonstrated that boiling enhanced TVs improved two-phase immersion cooling capability by over 50% as compared to baseline TV without boiling enhanced features.


2015 ◽  
Vol 9 (1) ◽  
pp. 096059 ◽  
Author(s):  
Huade Guan ◽  
Andrew McGrath ◽  
Roger Clay ◽  
Cäcilia Ewenz ◽  
Simon Benger ◽  
...  

2020 ◽  
Vol 0 (5) ◽  
pp. 45
Author(s):  
Muhammad Rayhan Azzindani ◽  
Nabila Fajri Kusuma Ningrum ◽  
Mega Rizkah Sudiar ◽  
Anak Agung Ngurah Perwira Redi

Sign in / Sign up

Export Citation Format

Share Document