Reliability and Performance Improvements of 3D System-in-Packages in Fan-Out Wafer Level Packaging

2013 ◽  
Vol 2013 (DPC) ◽  
pp. 001458-001485
Author(s):  
Scott Hayes ◽  
Tony Gong ◽  
Doug Mitchell ◽  
Michael Vincent ◽  
Jason Wright ◽  
...  

Recent development efforts for fan-out wafer level packaging (FO-WLP) have focused on system-in-package (SiP) solutions using both 2D and 3D packaging structures. Creating connections between the various elements of the system is one of the critical requirements of the packaging technology. The connections must provide a low loss pathway, exhibit manufacturability and prove reliable. Effective system connections enable complex yet volumetrically and electrically efficient systems to be constructed. The combination of various system elements including, but not limited to, SMDs, CMOS, GaAs, MEMS, power devices, imaging sensors or IPDs gives system designers the capability to generate novel systems and differentiating solutions. Both 2D and 3D SiPs based upon the Redistributed Chi Package (RCP) have been developed for consumer, defense and medical applications. In RCP (i.e. FO-WLP), 2D systems are readily achieved through the use of existing packaging processes, materials and structures. For 3D embodiments, the FO-WLP technology must be expanded. 3D integration in FO-WLP can be achieved with the use of package-on-package (PoP), embedded substrates, package edge connections, die stacking or even TSV approaches. However, a more typical solution to the 3D integration challenge is the through package via (TPV). TPVs can resemble substrate vias but their construction is typically different. Regardless of materials selected or processes used to create the TPV, system connections using a TPV will require a certain level of performance and reliability. Reliability and performance improvements to the 3D RCP technology will be presented.

2012 ◽  
Vol 2012 (DPC) ◽  
pp. 002374-002398
Author(s):  
Zhiwei (Tony) Gong ◽  
Scott Hayes ◽  
Navjot Chhabra ◽  
Trung Duong ◽  
Doug Mitchell ◽  
...  

Fan-out wafer level packaging (FO-WLP) has become prevalent in past two years as a package option with large number of pin count. As the result of early development, the single die packages with single-sided redistribution has reached the maturity to take off. While the early applications start to pay back the investment on the technology, the developments have shifted to more advanced packaging solutions with System-in-Package (SiP) and 3D applications. The nature of the FO-WLP interconnect along with the material compatibility and process capability of the Redistributed Chip Package (RCP) have enabled Freescale to create novel System-in-Package (SiP) solutions not possible in more traditional packaging technologies or Systems-on-Chip. Simple SiPs using two dimensional (2D), multi-die RCP solutions have resulted in significant package size reduction and improved system performance through shortened traces when compared to discretely packaged die or a substrate based multi-chip module (MCM). More complex three dimensional (3D) SiP solutions allow for even greater volumetric efficiency of the packaging space. 3D RCP is a flexible approach to 3D packaging with complexity ranging from Package-on-Package (PoP) type solutions to systems including ten or more multi-sourced die with associated peripheral components. Perhaps the most significant SiP capability of the RCP technology is the opportunity for heterogeneous integration. The combination of various system elements including, but not limited to SMDs, CMOS, GaAs, MEMS, imaging sensors or IPDs gives system designers the capability to generate novel systems and solutions which can then enable new products for customers. The following paper further discusses SiP advantages, applications and examples created with the RCP technology. Rozalia/Ron ok move from 2.5/3D to Passive 1-4-12.


2015 ◽  
Vol 2015 (DPC) ◽  
pp. 001378-001407
Author(s):  
Tim Mobley ◽  
Roupen Keusseyan ◽  
Tim LeClair ◽  
Konstantin Yamnitskiy ◽  
Regi Nocon

Recent developments in hole formations in glass, metalizations in the holes, and glass to glass sealing are enabling a new generation of designs to achieve higher performance while leveraging a wafer level packaging approach for low cost packaging solutions. The need for optical transparency, smoother surfaces, hermetic vias, and a reliable platform for multiple semiconductors is growing in the areas of MEMS, Biometric Sensors, Medical, Life Sciences, and Micro Display packaging. This paper will discuss the types of glass suitable for packaging needs, hole creation methods and key specifications required for through glass vias (TGV's). Creating redistribution layers (RDL) or circuit layers on both sides of large thin glass wafer poses several challenges, which this paper will discuss, as well as, performance and reliability of the circuit layers on TGV wafers or substrates. Additionally, there are glass-to-glass welding techniques that can be utilized in conjunction with TGV wafers with RDL, which provide ambient glass-to-glass attachments of lids and standoffs, which do not outgas during thermal cycle and allow the semiconductor devices to be attached first without having to reflow at lower temperatures. Fabrication challenges, reliability testing results, and performance of this semiconductor packaging system will be discussed in this paper.


2014 ◽  
Vol 2014 (DPC) ◽  
pp. 000545-000566
Author(s):  
John Hunt ◽  
Adren Hsieh ◽  
Eddie Tsai ◽  
Chienfan Chen ◽  
Tsaiying Wang

Nearly half a century ago the first die bumping was developed by IBM that would later enable what we call Wafer Level Packaging. It took nearly 40 years for Wafer Level Chip Scale Packaging (WLCSP), with all of the “packaging” done while still in wafer form to come into volume production. It began with very small packages having solderball counts of 2–6 I/Os. Over the years, the I/O count has grown, but much of the industry perception has remained that WLCSPs are limited to low I/O count, low power applications. But within the last few years, there have been growing demands for WLCSP packages to expand into applications with higher levels of complexity. With the ever increasing density and performance requirements for components in mobile electronic systems, the need has developed for an expansion of applicability for Wafer Level Package (WLP) technology. Wafer Level packaging has demonstrated a higher level of component density and functionality than has been traditionally available using standard packaging. This has led to the development of WLCSPs with larger die and increasing solderball connectivity counts. Development activity has been ongoing for improved materials and structures to achieve the required reliability performance for these larger die. For this study, we have evaluated several different metallic structures used for polymer core solderballs with two different WLCSP structures. The WLCSP structures which were evaluated included a standard 4-mask design with redistribution layer (RDL), using a Polymer 1, Metal RDL, Polymer2, and Under Bump Metallization (UBM); as well as a 3-mask design with RDL, using a Polymer 1, Metal RDL, and Polymer 2. In the first case, the solderballs are bonded to the UBM, while in the second case the balls are bonded to the RDL, using the Polymer 2 layer as the solder wettable defining layer. All of the combinations are tested using the standard JEDEC Temperature Cycling on Board (TCOB) and Drop Test (DT) methodologies. The two different metallurgies of the polymer core solderballs appear to react differently to the two different WLCSP structures. This suggests that the polymer core solderball compositions may perform best when optimized for the specific WLCSP structures that are manufactured. We will review the results of the impact of the different polymer core metallurgies on the TCOB and DT reliability performance of the WLCSPs, showing the interactions of these materials with the two WLCSP structures.


2013 ◽  
Vol 2013 (DPC) ◽  
pp. 001486-001519
Author(s):  
Curtis Zwenger ◽  
JinYoung Khim ◽  
YoonJoo Khim ◽  
SeWoong Cha ◽  
SeungJae Lee ◽  
...  

The tremendous growth in the mobile handset, tablet, and networking markets has been fueled by consumer demand for increased mobility, functionality, and ease of use. This, in turn, has been driving an increase in functional convergence and 3D integration of IC devices, resulting in the need for more complex and sophisticated packaging techniques. A variety of advanced IC interconnect technologies are addressing this growing need, such as Thru Silicon Via (TSV), Chip-on Chip (CoC), and Package-on-Package (PoP). In particular, the emerging Wafer Level Fan-Out (WLFO) technology provides unique and innovative extensions into the 3D packaging realm. Wafer Level Fan-Out is a package technology designed to provide increased I/O density within a reduced footprint and profile for low density single & multi-die applications at a lower cost. The improved design capability of WLFO is due, in part, to the fine feature capabilities associated with wafer level packaging. This can allow much more aggressive design rules to be applied compared to competing laminate-based technologies. In addition, the unique characteristics of WLFO enable innovative 3D structures to be created that address the need for IC integration in emerging mobile and networking applications. This paper will review the development of WLFO and its extension into unique 3D structures. In addition, the advantages of these WLFO designs will be reviewed in comparison to current competing packaging technologies. Process & material characterization, design simulation, and reliability data will be presented to show how WLFO is poised to provide robust, reliable, and low cost 3D packaging solutions for advanced mobile and networking products.


2015 ◽  
Vol 2015 (1) ◽  
pp. 000079-000085 ◽  
Author(s):  
Michael Toepper ◽  
Tanja Braun ◽  
Robert Gernhardt ◽  
Martin Wilke ◽  
Piotr Mackowiak ◽  
...  

There is a strong demand to increase the routing density of the RDL to match the requirements for future microelectronic systems which are mainly miniaturization and performance. Photo-resists for structuring the metallization or acting as a mold for electroplating are common for very fine lines and spaces due to the developments in the front-end processing. For example chemical amplified Photo-resists are now moving in the back-end and wafer level packaging process. The results are mainly governed by the performance of the equipment i.e. the photo-tool. This is different for the permanent dielectric polymer material. The major difference in photo-resists and dielectric photo-polymer are the different functions of the material systems. Photo-resists are only temporary masks for subsequent process steps like etching and plating. This is different for the photo-polymers which are a permanent part of the future systems. In this paper a new technology is discussed which uses a laser scanning ablation process and BCB-Based Dry Film low k Permanent Polymer. Laser ablation of polymers is in principle not a new technology. Low speed and high cost was the major barrier. But the combination of a scanning technology together with quartz masks has opened this technology to overcome the limitation of the current photo-polymer process. The new technology is described in detail and the results of structuring BCB-Based Films down to less than 4 μm via diameter in a 15 μm thick film has been shown. The via side wall can be controlled by the fluence of the laser pulse. Test structures have been designed and fabricated to demonstrate the excellent electrical resistivity of the vias using a two-layer metallization process.


2010 ◽  
Vol 2010 (1) ◽  
pp. 000325-000332 ◽  
Author(s):  
Alan Huffman ◽  
Philip Garrou

As IC scaling continues to shrink transistors, the increased number of circuits per chip requires more I/O per unit area (Rent's rule). High I/O count, the need for smaller form factors and the need for better electrical performance drove the technological change towards die being interconnected (assembled) by area array techniques. This review will examine this evolution from die wire bonded on lead frames to flip chip die in wafer level or area array packages and discuss emerging technologies such as copper pillar bumps, fan out packaging, integrated passives, and 3D integration..


2019 ◽  
Vol 29 (07) ◽  
pp. 2050115
Author(s):  
Xing Quan ◽  
Jiang Luo ◽  
Guodong Su ◽  
Kai Jing ◽  
Jinsong Zhan

This paper proposes a low-loss and high-isolation transformer (TF)-based mm-wave single-pole double-throw (SPDT) switch. The center-tapped technique is employed at the secondary coil of TF to improve isolation performance. The TF is implemented with the metals in redistribution layers (RDLs) in integrated fan-out (InFO) wafer level packaging technology to obtain low insertion loss (IL) and small chip size as the TF usually dominates the area of SPDT. The control device of the SPDT is realized in 40[Formula: see text]nm bulk CMOS process. The simulated result shows the proposed SPDT achieves a minimum IL of 1.34[Formula: see text]dB and the IL is less than 2.2[Formula: see text]dB at 24–31[Formula: see text]GHz. The isolations are better than 27[Formula: see text]dB between two double-throw ports and better than 20[Formula: see text]dB between single-pole and double-throw ports, respectively. The proposed SPDT has a compact silicon size of 220[Formula: see text][Formula: see text] (with PADs) and its return losses are better than [Formula: see text]9[Formula: see text]dB at 24–31[Formula: see text]GHz and. This work explores a new chip-package co-design method for the SPDT and may have some guidance for the co-design of SPDT and antenna in package (AiP).


Sign in / Sign up

Export Citation Format

Share Document