Innovative 3D Structures Utilizing Wafer Level Fan-Out (WLFO) Technology

2013 ◽  
Vol 2013 (DPC) ◽  
pp. 001486-001519
Author(s):  
Curtis Zwenger ◽  
JinYoung Khim ◽  
YoonJoo Khim ◽  
SeWoong Cha ◽  
SeungJae Lee ◽  
...  

The tremendous growth in the mobile handset, tablet, and networking markets has been fueled by consumer demand for increased mobility, functionality, and ease of use. This, in turn, has been driving an increase in functional convergence and 3D integration of IC devices, resulting in the need for more complex and sophisticated packaging techniques. A variety of advanced IC interconnect technologies are addressing this growing need, such as Thru Silicon Via (TSV), Chip-on Chip (CoC), and Package-on-Package (PoP). In particular, the emerging Wafer Level Fan-Out (WLFO) technology provides unique and innovative extensions into the 3D packaging realm. Wafer Level Fan-Out is a package technology designed to provide increased I/O density within a reduced footprint and profile for low density single & multi-die applications at a lower cost. The improved design capability of WLFO is due, in part, to the fine feature capabilities associated with wafer level packaging. This can allow much more aggressive design rules to be applied compared to competing laminate-based technologies. In addition, the unique characteristics of WLFO enable innovative 3D structures to be created that address the need for IC integration in emerging mobile and networking applications. This paper will review the development of WLFO and its extension into unique 3D structures. In addition, the advantages of these WLFO designs will be reviewed in comparison to current competing packaging technologies. Process & material characterization, design simulation, and reliability data will be presented to show how WLFO is poised to provide robust, reliable, and low cost 3D packaging solutions for advanced mobile and networking products.

2015 ◽  
Vol 2015 (DPC) ◽  
pp. 000217-000247 ◽  
Author(s):  
Curtis Zwenger ◽  
Ron Huemoeller ◽  
JinHan Kim ◽  
DongJean Kim ◽  
WonChul Do ◽  
...  

The tremendous growth in the mobile handset, tablet, and networking markets has been fueled by consumer demand for increased mobility, functionality, and ease of use. This, in turn, has been driving an increase in functional convergence and 3D integration of IC devices, resulting in the need for more complex and sophisticated packaging techniques. A variety of advanced IC interconnect technologies are addressing this growing need. These include Thru Silicon Via (TSV), Chip-on Chip (CoC), and Package-on-Package (PoP) approaches. In particular, emerging Wafer Level Fan-Out (WLFO) technology provides unique and innovative extensions into the 3D packaging realm. Traditional WLFO technologies are limited in design rules and 3D integration capabilities due to the processes and equipment used for circuit patterning. For more aggressive designs, TSV processes must be incorporated, which often times exceed the cost budget and design requirements needed for the device. Consequently, a gap exists between the design capabilities of WLFO and TSV that needs to be addressed. A new, innovative fan-out structure called Silicon Wafer Integrated Fan-out Technology (SWIFT™) incorporates conventional WLFO processes with leading-edge thin film patterning techniques to bridge the gap between TSV and traditional WLFO packages. The SWIFT package technology is designed to provide increased I/O and circuit density within a reduced footprint and profile for single & multi-die applications. The improved design capability of the technology is due, in part, to the fine feature capabilities associated with this new, innovative wafer level packaging technique. This can allow much more aggressive design rules to be applied compared to competing WLFO and laminate-based technologies. In addition, the unique characteristics of the SWIFT process enables the creation of innovative 3D structures that address the need for IC integration in emerging mobile and networking applications. This paper will review the development of the SWIFT technology and its extension into unique 3D structures. In addition, the advantages of SWIFT designs will be reviewed in comparison to current competing packaging technologies. Process information, material characterization, and design simulation data will be presented to show how the SWIFT process is poised to provide robust, reliable, and low cost 3D packaging solutions for advanced mobile and networking products.


Author(s):  
Curtis Zwenger ◽  
George Scott ◽  
Ron Huemoeller ◽  
WonChul Do ◽  
WonGeol Lee ◽  
...  

The tremendous growth in the mobile handset, tablet, and networking markets has been fueled by consumer demand for increased mobility, functionality, and ease of use. This, in turn, has been driving an increase in functional convergence and 3D integration of IC devices, resulting in the need for more complex and sophisticated packaging techniques. A variety of advanced IC interconnect technologies are addressing this growing need. These include Through Silicon Via (TSV), Chip-on Chip (CoC), and Package-on-Package (PoP) approaches. In particular, emerging Wafer Level Fan-Out (WLFO) technology provides unique and innovative extensions into the 3D packaging realm. Traditional WLFO technologies are limited in design rules and 3D integration capabilities due to the processes and equipment used for circuit patterning. For more aggressive designs, TSV processes must be incorporated, which often times exceed the cost budget and design requirements needed for the device. Consequently, a gap exists between the design capabilities of WLFO and TSV that needs to be addressed. A new, innovative fan-out structure called Silicon Wafer Integrated Fan-out Technology (SWIFT™) packaging incorporates conventional WLFO processes with leading-edge thin film patterning techniques to bridge the gap between TSV and traditional WLFO packages. The SWIFT methodology is designed to provide increased I/O and circuit density within a reduced footprint and profile for single and multi-die applications. The improved design capability of the technology is due, in part, to the fine feature capabilities associated with this new, innovative wafer-level packaging technique. The fine feature capabilities can allow much more aggressive design rules to be applied compared to competing WLFO and laminate-based technologies. In addition, the unique characteristics of the SWIFT process enable the creation of innovative 3D structures that address the need for IC integration in emerging mobile and networking applications. This paper will review the development of the SWIFT technology and its extension into unique 3D structures. In addition, the advantages of SWIFT designs will be reviewed in comparison to current competing packaging technologies. Process information, material characterization, and design simulation data will be presented to show how the SWIFT process is poised to provide robust, reliable, and low-cost 3D packaging solutions for advanced mobile and networking products. SWIFT is a trademark of Amkor Technology, Inc.


2012 ◽  
Vol 2012 (DPC) ◽  
pp. 002374-002398
Author(s):  
Zhiwei (Tony) Gong ◽  
Scott Hayes ◽  
Navjot Chhabra ◽  
Trung Duong ◽  
Doug Mitchell ◽  
...  

Fan-out wafer level packaging (FO-WLP) has become prevalent in past two years as a package option with large number of pin count. As the result of early development, the single die packages with single-sided redistribution has reached the maturity to take off. While the early applications start to pay back the investment on the technology, the developments have shifted to more advanced packaging solutions with System-in-Package (SiP) and 3D applications. The nature of the FO-WLP interconnect along with the material compatibility and process capability of the Redistributed Chip Package (RCP) have enabled Freescale to create novel System-in-Package (SiP) solutions not possible in more traditional packaging technologies or Systems-on-Chip. Simple SiPs using two dimensional (2D), multi-die RCP solutions have resulted in significant package size reduction and improved system performance through shortened traces when compared to discretely packaged die or a substrate based multi-chip module (MCM). More complex three dimensional (3D) SiP solutions allow for even greater volumetric efficiency of the packaging space. 3D RCP is a flexible approach to 3D packaging with complexity ranging from Package-on-Package (PoP) type solutions to systems including ten or more multi-sourced die with associated peripheral components. Perhaps the most significant SiP capability of the RCP technology is the opportunity for heterogeneous integration. The combination of various system elements including, but not limited to SMDs, CMOS, GaAs, MEMS, imaging sensors or IPDs gives system designers the capability to generate novel systems and solutions which can then enable new products for customers. The following paper further discusses SiP advantages, applications and examples created with the RCP technology. Rozalia/Ron ok move from 2.5/3D to Passive 1-4-12.


2014 ◽  
Vol 136 (2) ◽  
Author(s):  
Peisheng Liu ◽  
Jinlan Wang ◽  
Liangyu Tong ◽  
Yujuan Tao

Fast development of wafer level packaging (WLP) in recent years is mainly owing to the advances in integrated circuit fabrication process and the market demands for devices with high electrical performance, small form factor, low cost etc. This paper reviews the advances of WLP technology in recent years. An overall introduction to WLP is presented in the first part. The fabrication processes of WLP and redistribution technology are introduced in the second part. Reliability problems of WLPs, such as the strength of solder joints and reliability problems concerning fan-out WLPs are introduced in the third part. Typical applications of WLP technologies are discussed in the last part, which include the application of fan-out WLP, 3D packaging integrating with WLP technologies and its application in microelectromechanical systems (MEMS).


2015 ◽  
Vol 2015 (DPC) ◽  
pp. 001378-001407
Author(s):  
Tim Mobley ◽  
Roupen Keusseyan ◽  
Tim LeClair ◽  
Konstantin Yamnitskiy ◽  
Regi Nocon

Recent developments in hole formations in glass, metalizations in the holes, and glass to glass sealing are enabling a new generation of designs to achieve higher performance while leveraging a wafer level packaging approach for low cost packaging solutions. The need for optical transparency, smoother surfaces, hermetic vias, and a reliable platform for multiple semiconductors is growing in the areas of MEMS, Biometric Sensors, Medical, Life Sciences, and Micro Display packaging. This paper will discuss the types of glass suitable for packaging needs, hole creation methods and key specifications required for through glass vias (TGV's). Creating redistribution layers (RDL) or circuit layers on both sides of large thin glass wafer poses several challenges, which this paper will discuss, as well as, performance and reliability of the circuit layers on TGV wafers or substrates. Additionally, there are glass-to-glass welding techniques that can be utilized in conjunction with TGV wafers with RDL, which provide ambient glass-to-glass attachments of lids and standoffs, which do not outgas during thermal cycle and allow the semiconductor devices to be attached first without having to reflow at lower temperatures. Fabrication challenges, reliability testing results, and performance of this semiconductor packaging system will be discussed in this paper.


2010 ◽  
Vol 2010 (DPC) ◽  
pp. 000425-000445
Author(s):  
Paul Siblerud ◽  
Rozalia Beica ◽  
Bioh Kim ◽  
Erik Young

The development of IC technology is driven by the need to increase performance and functionality while reducing size, power and cost. The continuous pressure to meet those requirements has created innovative, small, cost-effective 3-D packaging technologies. 3-D packaging can offer significant advantages in performance, functionality and form factor for future technologies. Breakthrough in wafer level packaging using through silicon via technology has proven to be technologically beneficial. Integration of several key and challenging process steps with a high yield and low cost is key to the general adoption of the technology. This paper will outline the breakthroughs in cost associated with an iTSV or Via-Mid structure in a integrated process flow. Key process technologies enabling 3-D chip:Via formationInsulator, barrier and seed depositionCopper filling (plating),CMPWafer thinningDie to Wafer/chip alignment, bonding and dicing This presentation will investigate these techniques that require interdisciplinary coordination and integration that previously have not been practiced. We will review the current state of 3-D interconnects and the of a cost effective Via-first TSV integrated process.


2013 ◽  
Vol 2013 (1) ◽  
pp. 000447-000451 ◽  
Author(s):  
Michael Vincent ◽  
Doug Mitchell ◽  
Jason Wright ◽  
Yap Weng Foong ◽  
Alan Magnus ◽  
...  

Fan-out wafer level packaging (FO-WLP) has shifted from standard single die, single sided package to more advanced packages for System-in-Package (SiP) and 3D applications. Freescale's FO-WLP, Redistributed Chip Package (RCP), has enabled Freescale to create novel SiP solutions not possible in more traditional packaging technologies or Systems-on-Chip (SoC). Simple SiP's using two dimensional (2D), multi-die RCP solutions have resulted in significant package size reduction and improved system performance through shortened traces when compared to discretely packaged die or substrate based multi-chip module (MCM). More complex 3D SiP solutions allow for even greater volumetric efficiency of the packaging space. 3D RCP is a flexible approach to 3D packaging with complexity ranging from Package-on-Package (PoP) type solutions to systems including ten or more multi-sourced die with associated peripheral components. Perhaps the most significant SiP capability of the RCP technology is the opportunity for heterogeneous integration. The combination of various system elements including, but not limited to SMD's, CMOS, GaAs, MEMS, imaging sensors or IPD's gives system designers the capability to generate novel systems and solutions which can then enable new products for customers. To enable this ever increasing system integration and volumetric efficiency, novel technologies have been developed to utilize the full package space. Technologies such as through package via (TPV) and double sided redistribution are currently proving successful. For this discussion, an emerging technology for 3D RCP package stacking that can further enhance design flexibility and system performance is presented. This technology, package side connect, utilizes the vertical sides of packages and stacked packages to capture a normally unused piece of package real-estate. Mechanical and electrical characterization of successful side connects will be presented as well as reliability results of test vehicle packages using RCP packaging technology.


2010 ◽  
Vol 2010 (1) ◽  
pp. 000548-000553
Author(s):  
Zhaozhi Li ◽  
Brian J. Lewis ◽  
Paul N. Houston ◽  
Daniel F. Baldwin ◽  
Eugene A. Stout ◽  
...  

Three Dimensional (3D) Packaging has become an industry obsession as the market demand continues to grow toward higher packaging densities and smaller form factor. In the meanwhile, the 3D die-to-wafer (D2W) packaging structure is gaining popularity due to its high manufacturing throughput and low cost per package. In this paper, the development of the assembly process for a 3D die-to-wafer packaging technology, that leverages the wafer level assembly technique and flip chip process, is introduced. Research efforts were focused on the high-density flip chip wafer level assembly techniques, as well as the challenges, innovations and solutions associated with this type of 3D packaging technology. Processing challenges and innovations addressed include flip chip fluxing methods for very fine-pitch and small bump sizes; wafer level flip chip assembly program creation and yield improvements; and set up of the Pb-free reflow profile for the assembled wafer. 100% yield was achieved on the test vehicle wafer that has totally 1,876 flip chip dies assembled on it. This work has demonstrated that the flip chip 3D die-to-wafer packaging architecture can be processed with robust yield and high manufacturing throughput, and thus to be a cost effective, rapid time to market alternative to emerging 3D wafer level integration methodologies.


Nanomaterials ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 747 ◽  
Author(s):  
Shuping Xie ◽  
Xinjun Wan ◽  
Bo Yang ◽  
Wei Zhang ◽  
Xiaoxiao Wei ◽  
...  

Wafer-level packaging (WLP) based camera module production has attracted widespread industrial interest because it offers high production efficiency and compact modules. However, suppressing the surface Fresnel reflection losses is challenging for wafer-level microlens arrays. Traditional dielectric antireflection (AR) coatings can cause wafer warpage and coating fractures during wafer lens coating and reflow. In this paper, we present the fabrication of a multiscale functional structure-based wafer-level lens array incorporating moth-eye nanostructures for AR effects, hundred-micrometer-level aspherical lenses for camera imaging, and a wafer-level substrate for wafer assembly. The proposed fabrication process includes manufacturing a wafer lens array metal mold using ultraprecise machining, chemically generating a nanopore array layer, and replicating the multiscale wafer lens array using ultraviolet nanoimprint lithography. A 50-mm-diameter wafer lens array is fabricated containing 437 accurate aspherical microlenses with diameters of 1.0 mm; each lens surface possesses nanostructures with an average period of ~120 nm. The microlens quality is sufficient for imaging in terms of profile accuracy and roughness. Compared to lenses without AR nanostructures, the transmittance of the fabricated multiscale lens is increased by ~3% under wavelengths of 400–750 nm. This research provides a foundation for the high-throughput and low-cost industrial application of wafer-level arrays with AR nanostructures.


2000 ◽  
Author(s):  
Rahul Kapoor ◽  
Swee Y. Khim ◽  
Goh H. Hwa

Sign in / Sign up

Export Citation Format

Share Document