3D High Density: technology, roadmap and applications

Author(s):  
Lucile Arnaud ◽  
Severine Cheramy ◽  
Amandine Jouve ◽  
Lucile Arnaud ◽  
Claire Fenouillet ◽  
...  

After many years of packaging evolution as main industrial driver for 3D integration, even denser integration scheme have gained recently more interest. Slowdown of Moore's law while maintaining the need of high performance and/or low power from one hand, and a combination of performance / form factor from the other, lead research to innovation and alternative solutions. Additionally, difficulty of associating in a same 2D wafer heterogeneous processes (ie: combining Cmos device with “exotic” material, with low temperature dielectric) also gives an opportunity for a high density 3D approach rather than a 2D one. As an example, back-side illuminated imagers (BSI Imagers) players have recently released such 3D density (pitch in the range of 5 to 10 micron) [1] � From now, thinking about a 3D industrial integration within the range of few microns pitch is not anymore a dream. This specific application may raise some interest for other products such as memory denser stacking, partitioning of a large SoC � The objective of the paper is to describe 2 complementary technologies developed at CEA-Leti which address such high density of 3D integration: Hybrid Bonding in the range of few �ms; Coolcube in the range of few 100e of nms. We will first take some time to describe both technologies and recent CEA-Leti's results. The positioning of each technologies in terms of pitch and performance will be given. 1 - 3D parallel integration: hybrid bonding Hybrid bonding integration scheme has been first developed on a wafer scale approach. A test vehicle, with several BEOL layers and connected by the implementation of hybrid bonding, has been designed. Morphological and electrical data will be given leading to the conclusion that the process is very reliable and robust [1], [2]. Contact resistance per contact pads has been measured at few mOhms, which is relatively low compared to tens or even hundreds of mOhms for more classical interconnection technologies (copper pillar, bump, Cu-Cu thermos-compression). Nevertheless, for cost reason, as well as for multi dies stacking, the need for Die-To-Wafer approach remains true, while keeping a high density of interconnect [3]. The process flow as well as test vehicle designed for this approach will be described. Major challenges including handling of the dies after sawing and till the bonding itself will be addressed in the paper: wafer handler, wafer preparation and pick & place. Deep characterization is proposed. 2 - 3D sequential integration: CoolCube An alternative approach to conventional planar integration for future nodes is the monolithic 3D integration (3DVLSI). Monolithic offers the possibility to stack devices with a lithographic alignment precision enabling 3D contacts introduction at the device level (up to 100 million vias per mm� with 14nm ground rules). 3DVLSI can by routed either at gate or transistor levels. The partitioning at the gate level allows IC performance gain without resorting to scaling thanks to wire length reduction. Partitioning at the transistor level by stacking n-FET over p-FET (or the opposite) enables the independent optimization of both types of transistors (customized implementation of performance boosters: channel material / substrate orientation / channel and Raised Sources and Drains strain, etc. [4–5]) with reduced process complexity compared to a planar co-integration. The ultimate example of high performance CMOS at low process cost is the stacking of III–V nFETs above SiGe pFETs [6–7]. These high mobility transistors are well suited for 3DVLSI because their process temperatures are intrinsically low. 3DVLSI, with its high contact density, can also be seen as a powerful solution for heterogeneous co-integrations requiring high 3D vias densities such as NEMS with CMOS for gas sensing applications [8–9] or highly miniaturized imagers [10]. 3- Comparison and roadmap This paper will also provide features that give some applications' meaning for the development of both technologies in parallel. Particularly, both technologies will be compared in terms of possible pitch reachable. Main comparison features rely on advanced interconnection: dimension & pitch resistance, parasite. A thermal simulation comparison study will also be included.

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 783 ◽  
Author(s):  
Andrea Gaiardo ◽  
David Novel ◽  
Elia Scattolo ◽  
Michele Crivellari ◽  
Antonino Picciotto ◽  
...  

The substrate plays a key role in chemoresistive gas sensors. It acts as mechanical support for the sensing material, hosts the heating element and, also, aids the sensing material in signal transduction. In recent years, a significant improvement in the substrate production process has been achieved, thanks to the advances in micro- and nanofabrication for micro-electro-mechanical system (MEMS) technologies. In addition, the use of innovative materials and smaller low-power consumption silicon microheaters led to the development of high-performance gas sensors. Various heater layouts were investigated to optimize the temperature distribution on the membrane, and a suspended membrane configuration was exploited to avoid heat loss by conduction through the silicon bulk. However, there is a lack of comprehensive studies focused on predictive models for the optimization of the thermal and mechanical properties of a microheater. In this work, three microheater layouts in three membrane sizes were developed using the microfabrication process. The performance of these devices was evaluated to predict their thermal and mechanical behaviors by using both experimental and theoretical approaches. Finally, a statistical method was employed to cross-correlate the thermal predictive model and the mechanical failure analysis, aiming at microheater design optimization for gas-sensing applications.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4425
Author(s):  
Ana María Pineda-Reyes ◽  
María R. Herrera-Rivera ◽  
Hugo Rojas-Chávez ◽  
Heriberto Cruz-Martínez ◽  
Dora I. Medina

Monitoring and detecting carbon monoxide (CO) are critical because this gas is toxic and harmful to the ecosystem. In this respect, designing high-performance gas sensors for CO detection is necessary. Zinc oxide-based materials are promising for use as CO sensors, owing to their good sensing response, electrical performance, cost-effectiveness, long-term stability, low power consumption, ease of manufacturing, chemical stability, and non-toxicity. Nevertheless, further progress in gas sensing requires improving the selectivity and sensitivity, and lowering the operating temperature. Recently, different strategies have been implemented to improve the sensitivity and selectivity of ZnO to CO, highlighting the doping of ZnO. Many studies concluded that doped ZnO demonstrates better sensing properties than those of undoped ZnO in detecting CO. Therefore, in this review, we analyze and discuss, in detail, the recent advances in doped ZnO for CO sensing applications. First, experimental studies on ZnO doped with transition metals, boron group elements, and alkaline earth metals as CO sensors are comprehensively reviewed. We then focused on analyzing theoretical and combined experimental–theoretical studies. Finally, we present the conclusions and some perspectives for future investigations in the context of advancements in CO sensing using doped ZnO, which include room-temperature gas sensing.


2010 ◽  
Vol 1249 ◽  
Author(s):  
Hyung Suk Yang ◽  
Muhannad Bakir

AbstractMicroelectromechanical Systems (MEMS) market is a rapidly growing market with a wide range of devices. Most of these devices require an interaction with an electronic circuit, and with the increasing number of high performance MEMS devices that are being introduced, a demand for integrating CMOS and MEMS using high-density and low-parasitic interconnects have also been on the rise.Unfortunately, conventional methods of integrating CMOS with MEMS cannot provide the high density and low-parasitic interconnections required by modern high performance MEMS devices, and at the same time provide the flexibility required to accommodate new devices that are made using new materials and highly innovative fabrication processes.Heterogeneous 3D integration of MEMS and CMOS has the potential to provide both the performance and the integration flexibility; however there are two interconnect challenges that need to be addressed. This paper outlines the details of these interconnect challenges and introduces two interconnect technologies, Mechanically Flexible Interconnects (MFI) and Through-Silicon Via (TSV), developed specifically to address these challenges.


Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2581 ◽  
Author(s):  
Wei Shan ◽  
Zhengqian Fu ◽  
Mingsheng Ma ◽  
Zhifu Liu ◽  
Zhenggang Xue ◽  
...  

Tin(II) monosulfide (SnS) nanosheets were synthesized using SnCl4•5H2O and S powders as raw materials in the presence of H2O via a facile chemical bath method. Orthorhombic phase SnS nanosheets with a thickness of ~100 nm and lateral dimensions of 2~10 μm were obtained by controlling the synthesis parameters. The formation of a SnO2 intermediate is key to the valence reduction of Sn ions (from IV to II) and the formation of SnS. The gas sensors fabricated from SnS nanosheets exhibited an excellent response of 14.86 to 100 ppm ethanol vapor when operating at 160 °C, as well as fast response and recovery times of 23 s and 26 s, respectively. The sensors showed excellent selectivity for the detection of ethanol over acetone, methanol, and ammonia gases, which indicates the SnS nanosheets are promising for high-performance ethanol gas sensing applications.


Nano Express ◽  
2021 ◽  
Author(s):  
Vijendra Singh Bhati ◽  
Vishakha Takhar ◽  
Ramesh Raliya ◽  
Mahesh Kumar ◽  
Rupak Banerjee

Abstract In recent years, many 2D nanomaterials like graphene, MoS2, phosphorene, and metal oxide nanosheets have been investigated for gas sensing applications due to their excellent properties. Amongst other 2D nanomaterials, graphitic carbon nitride (g-C3N4) has attracted significant attention owing to its simple synthesis process, tunable electronic properties, and exceptional physicochemical properties. Such remarkable properties assert g-C3N4 as a potential candidate for the next-generation high-performance gas sensors employed in the detection of toxic and flammable gases. Although several articles and reviews are available on g-C3N4 for their synthesis, functionalities, and applications for the detection of humidity. Few of them has focused their attention on gas sensing using g-C3N4. Thus, in this review, we have methodically summed up the recent advances in g-C3N4 and its composites-based gas sensor for the detection of toxic and flammable gases. Moreover, we have also incorporated the synthesis strategies and the comprehensive physics of g-C3N4 based gas sensors. Additionally, different approaches are presented for the enhancement of gas sensing/detecting properties of g-C3N4 based gas sensors. Finally, the challenges and future scope of g-C3N4 based gas sensors for real-time monitoring of gases have been discussed.


2021 ◽  
Vol MA2021-02 (33) ◽  
pp. 971-971
Author(s):  
Shin-Yi Tang ◽  
Chun-Chuan Yang ◽  
Teng-Yu Su ◽  
Tzu-Yi Yang ◽  
Shu-Chi Wu ◽  
...  

2018 ◽  
Author(s):  
Seng Nguon Ting ◽  
Hsien-Ching Lo ◽  
Donald Nedeau ◽  
Aaron Sinnott ◽  
Felix Beaudoin

Abstract With rapid scaling of semiconductor devices, new and more complicated challenges emerge as technology development progresses. In SRAM yield learning vehicles, it is becoming increasingly difficult to differentiate the voltage-sensitive SRAM yield loss from the expected hard bit-cells failures. It can only be accomplished by extensively leveraging yield, layout analysis and fault localization in sub-micron devices. In this paper, we describe the successful debugging of the yield gap observed between the High Density and the High Performance bit-cells. The SRAM yield loss is observed to be strongly modulated by different active sizing between two pull up (PU) bit-cells. Failure analysis focused at the weak point vicinity successfully identified abnormal poly edge profile with systematic High k Dielectric shorts. Tight active space on High Density cells led to limitation of complete trench gap-fill creating void filled with gate material. Thanks to this knowledge, the process was optimized with “Skip Active Atomic Level Oxide Deposition” step improving trench gap-fill margin.


2019 ◽  
Vol 11 (5) ◽  
pp. 05040-1-05040-4
Author(s):  
Sumanta Kumar Tripathy ◽  
◽  
Sanjay Kumar ◽  
Divya Aparna Narava ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document