Impact of Mechanical Simulation Methodology on Electronic Package Reliability Assessment with Applications to 3D TSS Technology

2010 ◽  
Vol 2010 (1) ◽  
pp. 000170-000175
Author(s):  
Zhongping Bao ◽  
James Burrell

Mechanical reliability issues in electronic packages have drawn significant attention in semiconductor industry for decades and have increased product development cost significantly. Recent rapid growth of various portable electronic devices like smartphone and smartbook with increasing demand for more functionality in tighter space further challenges the limit of mechanical reliability. To reduce the product development cost and time-to-market, mechanical simulation has been extensively employed in semiconductor industry for the purpose of design optimization and reliability assessment. The importance of having the correct simulation methodology can't be overemphasized considering the extent of its utilization throughout the product development cycle. In this paper, we will discuss three fundamental mechanical modeling methodologies that are widely used for simulating flip-chip overmolded packages. These approaches are generally used to simulate package warpage at End-of-Line (EOL) as well as to assess package reliability from a stress point of view. The first approach we studied in this paper is to assume that the package is initially stress-free at a given uniform temperature, which is usually taken to be the peak temperature of the mold cure profile. However, this differs from the actual assembly process where package composition and cure profiles are different at each assembly processing step. The second approach simply accounts for that fact and assigns different stress-free temperature to each individual package component. For example, the die is assumed to be stress-free at the chip attach temperature and substrate is assumed to be stress-free instead at the substrate baking temperature. This approach captures more physics compared to the first approach. The last approach explores that idea further by simulating the actual assembly process, step by step, through element removal and addition techniques available in the software. Such study is also carried out for a flip-chip overmolded package with Through-Silicon-Stacking (TSS) technology. Both Die-to-Die-first (D2D) and Die-to-Substrate-first (D2S) processes are examined. Simulated warpage, as well as reliability assessment regarding different failure mechanisms using these three modeling methodologies are discussed in detail. The paper is prepared to the best knowledge of authors and those statements do not necessarily reflect opinions of Qualcomm Inc. Some data shared in this paper is normalized such that no commercial confidential information is published.

Author(s):  
Jefferson Talledo

Die crack is a common problem in the semiconductor industry and being able to predict the breaking force at a given loading condition could help prevent such crack problem. This paper presents the use of mechanical simulation in predicting the force at which the silicon die breaks in semiconductor package assembly process. A computer simulation with finite element analysis (FEA) technique was used. The applied force or displacement in a die bending simulation with 3 mm, 4 mm and 15 mm support span was varied until the resulting maximum principal stress of the die becomes equal to its fracture strength. Results revealed that the breaking force for the 70 µm die with 6 mm width is around 5 N for the 3 mm support span and only around 1 N for the 15 mm support span. With the good agreement between modeling and actual results, the study showed that mechanical simulation is an effective approach in predicting die breaking force and can be used to simulate different mechanical loads in the package assembly where possible die crack could happen and be avoided. This is a fast and cost-effective way of assessing risk of die crack and obtaining package assembly process parameters and specifications that are safe to the silicon die.


Author(s):  
Andrew J. Komrowski ◽  
N. S. Somcio ◽  
Daniel J. D. Sullivan ◽  
Charles R. Silvis ◽  
Luis Curiel ◽  
...  

Abstract The use of flip chip technology inside component packaging, so called flip chip in package (FCIP), is an increasingly common package type in the semiconductor industry because of high pin-counts, performance and reliability. Sample preparation methods and flows which enable physical failure analysis (PFA) of FCIP are thus in demand to characterize defects in die with these package types. As interconnect metallization schemes become more dense and complex, access to the backside silicon of a functional device also becomes important for fault isolation test purposes. To address these requirements, a detailed PFA flow is described which chronicles the sample preparation methods necessary to isolate a physical defect in the die of an organic-substrate FCIP.


2002 ◽  
Vol 7 (5-6) ◽  
pp. 239-243 ◽  
Author(s):  
G. Elger ◽  
M. Hutter ◽  
H. Oppermann ◽  
R. Aschenbrenner ◽  
H. Reichl ◽  
...  
Keyword(s):  

2000 ◽  
Vol 122 (4) ◽  
pp. 294-300 ◽  
Author(s):  
B. Han ◽  
P. Kunthong

Thermo-mechanical deformations of microstructures in a surface laminar circuit (SLC) substrate are quantified by microscopic moire´ interferometry. Two specimens are analyzed; a bare SLC substrate and a flip chip package assembly. The specimens are subjected to a uniform thermal loading of ΔT=−70°C and the microscopic displacement fields are documented at the identical region of interest. The nano-scale displacement sensitivity and the microscopic spatial resolution obtained from the experiments provide a faithful account of the complex deformation of the surface laminar layer and the embedded microstructures. The displacement fields are analyzed to produce the deformed configuration of the surface laminar layer and the strain distributions in the microstructures. The high modulus of underfill produces a strong coupling between the chip and the surface laminar layer, which produces a DNP-dependent shear deformation of the layer. The effect of the underfill on the deformation of the microstructures is investigated and its implications on the package reliability are discussed. [S1043-7398(00)01304-9]


1998 ◽  
Vol 555 ◽  
Author(s):  
P. Su ◽  
T. M. Korhonen ◽  
S. J. Hong ◽  
M. A. Korhonen ◽  
C. Y. Li

AbstractIn order to use a flip chip method for bonding the Si chip directly to an organic substrate, compatible under bump metallization (UBM) must be available. Conventional schemes with a copper-based solderable layer are not well compatible with the high-tin solders (such as eutectic Pb-Sn) used with organic substrates. This is due to the rapid reaction between Sn and Cu which depletes the UBM of copper. Ni-based schemes exhibit slower reaction with the solder and have been identified by the semiconductor industry as preferable replacements to Cu-based UBM's. However, Ni-containing metallurgies are often associated with high stresses, which results in poor practical adhesion between the silicon chip and the metallization, leading to interfacial failure during fabrication or service. In this research, several nickel-containing UBM schemes are studied experimentally. Stress measurements are made for each metallization before patterning of UBM pads. An optimal Ni concentration for the UBM is suggested based on the results from this study.


Sign in / Sign up

Export Citation Format

Share Document