Challenges in 3D Inspection of Micro Bumps Used in 3D Packaging

2012 ◽  
Vol 2012 (1) ◽  
pp. 000542-000547 ◽  
Author(s):  
Reza Asgari

2.5D/3D devices are the next major packaging technologies, driven by the need for more functionality, lower power consumption and smaller footprint. Many device manufacturers are devoting capital to develop their own processes and some are already shipping devices such as FPGA (Field Programmable Gate Array) on interposers. 3D packages often require hundreds of thousands of I/O per die. Micro Pillar bumps and C4 bumps are the main bump geometries used in 3D packages as their small pitch and size allow the required number of I/Os. Inspecting these bumps throughout the process is critical because failure after chip to chip or chip to wafer bonding is very costly. This paper describes the use of a camera and laser triangulation to provide complete 2D and 3D measurement and inspection capability.

2018 ◽  
Vol 7 (4) ◽  
pp. 2569
Author(s):  
Priyanka Chauhan ◽  
Dippal Israni ◽  
Karan Jasani ◽  
Ashwin Makwana

Data acquisition is the most demanding application for the acquisition and monitoring of various sensor signals. The data received are processed in real-time environment. This paper proposes a novel Data Acquisition (DAQ) technique for better resource utilization with less power consumption. Present work has designed and compared advanced Quad Data Rate (QDR) technique with traditional Dual Data Rate (DDR) technique in terms of resource utilization and power consumption of Field Programmable Gate Array (FPGA) hardware. Xilinx ISE is used to verify results of FPGA resource utilization by QDR with state of the art DDR approach. The paper ratiocinates that QDR technique outperforms traditional DDR technique in terms of FPGA resource utilization.  


Author(s):  
Kommalapati Monica ◽  
◽  
Dereddy Anuradha ◽  
Syed Rasheed ◽  
Barnala Shereesha ◽  
...  

Nowadays, most of the application depends on arithmetic designs such as an adder, multiplier, divider, etc. Among that, multipliers are very essential for designing industrial applications such as Finite Impulse Response, Fast Fourier Transform, Discrete cosine transform, etc. In the conventional methods, different kind of multipliers such as array multiplier, booth multiplier, bough Wooley multiplier, etc. are used. These existing multipliers are occupied more area to operate. In this study, Wallace Tree Multiplier (WTM) is implemented to overcome this problem. Two kinds of multipliers have designed in this research work for comparison. At first, existing WTM is designed with normal full adders and half adders. Next, proposed WTM is designed using Ladner Fischer Adder (LFA) to improve the hardware utilization and reduce the power consumption. Field Programmable Gate Array (FPGA) performances such as slice Look Up Table (LUT), Slice Register, Bonded Input-Output Bios (IOB) and power consumption are evaluated. The proposed WTM-LFA architecture occupied 374 slice LUT, 193 slice register, 59 bonded IOB, and 26.31W power. These FPGA performances are improved compared to conventional multipliers such asModified Retiming Serial Multiplier (MRSM), Digit Based Montgomery Multiplier (DBMM), and Fast Parallel Decimal Multiplier (FPDM).


With the crisis of power across the globe, green communication and power-efficient devices are getting more and more attention. This work emphasis about the implementation of Control Unit (CU) circuit on FPGA kit. In this project, power consumption of CU circuit is analyzed by changing the different Input/Output (I/O) standards of FPGA. This project is implemented on Xilinx 14.1 tool and the power consumption on CU is calculated with X Power Analyzer tool on 28-Nano-Meter (nm) Artix-7 Field Programmable Gate Array (FPGA). Out of different I/O standards, CU circuit is most power efficient with LVCMOS I/O standard on Artix-7 FPGA


These works describe the implementation of a control unit which is an important part of Central Processing Unit (CPU) with the Field Programmable Gate Array (FPGA). In this work a frequency scaled and thermal aware energy-efficient control unit is designed with the help of 28 nanometer (nm) technology based FPGA. Frequency varies from 100MHz to 5GHz and the rise in frequency also gives rise in power consumption of control unit with FPGA. The thermal properties of FPGA also increase with increment in frequency. This whole experiment is done on Xilinx 14.1 ISE Design Suit and it is observed that lower the frequency, lower will be the power consumption of FPGA.


2013 ◽  
Vol 2013 (1) ◽  
pp. 000558-000563 ◽  
Author(s):  
Russ Dudley ◽  
David Marx ◽  
Rajiv Roy ◽  
David Grant ◽  
Matt Wilson ◽  
...  

As the industry is investigating more cost-effective and reliable Cu Pillar Bumping as well as TSV, a key enabler is process control through inspection and metrology. In working with the industry, Rudolph has developed a suite of solutions that incorporate inspection, metrology and software enabling rapid yield ramp. The solution set applies to via etch, CMP, RDL, micro-bumping and all the way to Chip on Wafer mount and post-saw. As an example, within the TSV process a challenging inspection is that of detecting defects after CMP and nail reveal. The bonded wafers are warped, there are no alignment fiducials and the resolution requirement is high. Rudolph has developed a specific solution designed to address the nail reveal defectivity issue as well as metrology sensors to measure the nail height. Micro Pillar bumps and C4 bumps are the main bump geometries used in 3D packages as their small pitch and size allow the required number of I/Os. Rudolph will discuss an inspection system that incorporates multiple metrology sensors to provide complete 2D and 3D measurement and inspection solutions.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Rym Skhiri ◽  
Virginie Fresse ◽  
Jean Paul Jamont ◽  
Benoit Suffran ◽  
Jihene Malek

Field Programmable Gate Array (FPGA) draws a significant attention from both industry and academia by accelerating computationally expensive applications and achieving low power consumption. FPGAs are interesting due to the flexibility and reconfigurabiltiy of their device. Cloud computing becomes a major trend towards infrastructure and computing resources dematerialization. It provides “unlimited” storage capacities and a large number of data and applications that make collaboration easier between multiple (not domain specific) designers. Many papers in the literature have surveyed Cloud and FPGA separately and, more precisely, their services and challenges. The acceleration of applications by FPGA and the unlimited capacities of the cloud are expected to be more and more pervasive. As more and more FPGA are being deployed in traditional cloud, it is appropriate to clarify what is the cloud FPGA and which drawbacks of using FPGA in local are resolved. We present a survey of the cloud FPGA works that have been proposed to exploit the advantages of using FPGA in the cloud. We classify these studies in three services to highlight their benefits and limitations. This survey aims at motivating further researches in cloud FPGA.


With the crisis of power across the globe, green communication and power-efficient devices are getting more and more attention. This work emphasis about the implementation of Control Unit (CU) circuit on FPGA kit. In this project, power consumption of CU circuit is analyzed by changing the different Input/Output (I/O) standards of FPGA. This project is implemented on Xilinx 14.1 tool and the power consumption on CU is calculated with X Power Analyzer tool on 28-Nano-Meter (nm) Artix-7 Field Programmable Gate Array (FPGA). Out of different I/O standards, CU circuit is most power efficient with LVCMOS I/O standard on Artix-7 FPGA.


VLSI Design ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
X. Yang ◽  
N. Wu ◽  
J. H. Andrian

This paper proposes a novel bus encoding method on MBUS in order to reduce the power consumption of system-on-chips (SoCs). The main contribution is to lower the bus activity by an average 64.55% and thus decrease the IO power consumption through reconfiguring the MBUS transmission. This method is effective because field-programmable gate array (FPGA) IOs are most likely to have very large capacitance associated with them and consequently dissipate a lot of dynamic power. Experimental result shows an average 70.96% total power reduction compared with the original MBUS implementation.


Sign in / Sign up

Export Citation Format

Share Document