Sensor Integration Technologies for Internet of Things

2015 ◽  
Vol 2015 (S1) ◽  
pp. S1-S34
Author(s):  
Franz Schrank

Internet of things (IoT) will influence all areas from consumer to health care to building and home automation and to observation. IoT enables direct communication between objects via internet. The main functional blocks of IoT devices are sensing, data transmitting, processing and analysis and subsequent actuation. As a result such a system will consist of sensors, actuators, wireless connection, data processing, power management, energy harvesting, memory and software. A total market volume of almost 400 Bio US$ is predicted for 2024 whereof about 12Bio US$ are expected for IoT sensors (Yole2014)). The main challenges are to reduce footprint (e.g. wearables, swarm), reduce costs of system, improve reliability and provide better performance. For example the costs of today's smart sensor systems are in the 100–1000US$ range and for 2024 an ASP in the 1US$ $ level is expected (Yole2014). To enable this, a high level of integration is needed for the next generations of IoT sensors. This will on one hand reduce costs and form factor but also enable multi sensors devices. More than Moore integration of functions offers the potential to meet both performance and cost targets for mass-market adoption. In addition to SoC (System on Chip) and SiP (System in Package) heterogeneous 3D integrations will be key enablers. 3D integration with the main technology bricks like TSV (Through Silicon Via), RDL (Redistribution Layer), D2W (Die to Wafer) and W2W (Wafer to Wafer) stacking and embedding allows to combine different technologies - different CMOS notes, MEMS, photonics, etc. At the same time expensive single die packaging can be avoided. The presentation will focus on reviewing 3D integration technologies and their potential for IoT from the perspective of a sensor solution provider.

2020 ◽  
Vol 52 (4) ◽  
pp. 85-98
Author(s):  
MIKHAIL M PUTYATO ◽  
◽  
ALEKSANDR S. MAKARYAN ◽  
SHAMIL M. CHICH ◽  
VALENTINA K. MARKOVA ◽  
...  

Internet of things (IoT) devices have become increasingly popular in recent years. IoT refers to smart refrigerators, smart locks, video nannies, and other household devices that have access to the Internet. However, the growing popularity of IoT technology is increasingly attracting the attention of hackers who are interested both in disclosing confidential enduser data and in misuse of the computing resources of the attacked devices. Unfortunately, malicious attacks often result in successful compromise of devices, with the ensuing consequences. The reasons for the high level of compromise of IoT devices are caused both by errors in the design, implementation, and relatively simple operation with the use of various information security audit tools. To identify defects in the development and implementation of devices, you need to have some idea about them, that is, to identify and eliminate them in a timely manner. This can be achieved in various ways. One of these methods is to create special traps that collect information about the activity of an attacker, called honeypot. The essence of the honeypot technology is to emulate or implement the functionality of existing devices, services, and protocols, with the accumulation of data about malicious activity of an attacker. The information obtained can be used to improve the protection of real devices, services, and protocols, as well as to develop measures to counter hackers. The article provides a comparative analysis of the existing most popular honeypot systems in order to identify the best system. The analysis identified both the weaknesses and strengths of these systems. Next, an attempt is made to adapt these same systems to function at the level of Internet of things devices.


2017 ◽  
pp. 441-459
Author(s):  
Grzegorz Chmaj ◽  
Henry Selvaraj

Nowadays we are witnessing a trend with significantly increasing number of networked and computing-capable devices being integrated into everyday environment. This trend is expected to continue. With computing devices available as logic structures, they might use each other's processing capabilities to achieve a given goal. In this paper, the authors propose an architectural solution to perform the processing of tasks using a distributed structure of Internet of Things devices. They also include ZigBee devices that are not connected to the Internet, but participate with the processing swarm using local network. This significantly extends the flexibility and potential of the IoT structure, while being still not a well-researched area. Unlike many high-level realizations for IoT processing, the authors present a realization operating on the communications, computing and near protocol level that achieves energy consumption efficiency. They also include the reconfigurability of IoT devices. The authors' work is suitable to be the base for higher-level realizations, especially for systems with devices operating on battery power. At the same time, the architecture presented in this paper uses minimal centralization, moving maximum responsibilities to regular devices. The proposed realizations are described using linear programming models and their high efficiency is evaluated.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 359
Author(s):  
Houshyar Honar Pajooh ◽  
Mohammad Rashid ◽  
Fakhrul Alam ◽  
Serge Demidenko

Providing security and privacy to the Internet of Things (IoT) networks while achieving it with minimum performance requirements is an open research challenge. Blockchain technology, as a distributed and decentralized ledger, is a potential solution to tackle the limitations of the current peer-to-peer IoT networks. This paper presents the development of an integrated IoT system implementing the permissioned blockchain Hyperledger Fabric (HLF) to secure the edge computing devices by employing a local authentication process. In addition, the proposed model provides traceability for the data generated by the IoT devices. The presented solution also addresses the IoT systems’ scalability challenges, the processing power and storage issues of the IoT edge devices in the blockchain network. A set of built-in queries is leveraged by smart-contracts technology to define the rules and conditions. The paper validates the performance of the proposed model with practical implementation by measuring performance metrics such as transaction throughput and latency, resource consumption, and network use. The results show that the proposed platform with the HLF implementation is promising for the security of resource-constrained IoT devices and is scalable for deployment in various IoT scenarios.


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4921 ◽  
Author(s):  
Peter Kaňuch ◽  
Dominik Macko

The rapidly growing segment of the Internet of Things (IoT) makes the security threats more prominent than ever. The research around communication security and cybersecurity in such networks is still a challenge, mainly due to the typically limited energy and computation resources of IoT devices. The strong security mechanisms require significant power and thus the energy wastage must be minimized. Optimized application-specific security protocols are commonly used to make the data transfer more efficient, while still offering a high level of security. The supported security features, such as confidentiality, integrity or authenticity, should not be affected by the optimization. Our work is focused on optimizing one of the existing security protocols for the use in the IoT area, namely the Host Identity Protocol (HIP). Based on the analysis of related works, we have identified multiple possibilities for optimization and combined some of them into the proposed E-HIP optimized protocol. For verification purpose, it has been implemented as a modification of the open-source OpenHIP library and applied on a communication between real hardware devices. The secured communication worked correctly. The resulting effect of the proposed optimization has been evaluated experimentally and it represents an increase in energy efficiency by about 20%. Compared to other HIP optimizations, the achieved results are similar; however, the proposed optimizations are unique and can be further combined with some of the existing ones to achieve even higher efficiency.


2016 ◽  
Vol 54 (2(108)) ◽  
pp. 22-36
Author(s):  
Christopher Biedermann

PURPOSE/THESIS: The purpose of this paper is to use a recent cyber-attack to highlight the current state of readiness of Internet of Things (IoT) technologies with regard to security vulnerabilities as well as fundamental – in the author’s opinion – changes that will need to take place within these industries and technologies to mitigate the overall cybersecurity risk. APPROACH/METHODS: The analysis of the findings from numerous existing published security studies. RESULTS AND CONCLUSIONS: The following conclusions were reached: (1) in the world becoming more and more interconnected through the web enabled devices (IoT devices), new forms of security threats have been developed; (2) at present IoT devices introduce a high level of vulnerability; (3) many of these risks may be mitigated with already existing technologies; (4) however, due to the fragmented and heterogeneous nature of the IoT devices, the implementation of even basic levels of security is more challenging than in the case of traditional Internet connected devices (e.g. personal computers); (5) the industry needs to face and address three key issues that will in turn help to mitigate the unique security threats posed by IoT devices, namely: the drive towards open standards, the industry cooperation and consolidation, and the improvement of consumer awareness. ORIGINALITY/VALUE: The value of the research is to highlight the security issues related to the Internet of Things and propose solutions that must be implemented to increase the level of security awareness within the IoT environment.


2016 ◽  
Vol 4 (1) ◽  
pp. 31-47 ◽  
Author(s):  
Grzegorz Chmaj ◽  
Henry Selvaraj

Nowadays we are witnessing a trend with significantly increasing number of networked and computing-capable devices being integrated into everyday environment. This trend is expected to continue. With computing devices available as logic structures, they might use each other's processing capabilities to achieve a given goal. In this paper, the authors propose an architectural solution to perform the processing of tasks using a distributed structure of Internet of Things devices. They also include ZigBee devices that are not connected to the Internet, but participate with the processing swarm using local network. This significantly extends the flexibility and potential of the IoT structure, while being still not a well-researched area. Unlike many high-level realizations for IoT processing, the authors present a realization operating on the communications, computing and near protocol level that achieves energy consumption efficiency. They also include the reconfigurability of IoT devices. The authors' work is suitable to be the base for higher-level realizations, especially for systems with devices operating on battery power. At the same time, the architecture presented in this paper uses minimal centralization, moving maximum responsibilities to regular devices. The proposed realizations are described using linear programming models and their high efficiency is evaluated.


2022 ◽  
Vol 18 (1) ◽  
pp. 1-28
Author(s):  
Abdelrahman Elkanishy ◽  
Paul M. Furth ◽  
Derrick T. Rivera ◽  
Ahameed A. Badawy

Over the past decade, the number of Internet of Things (IoT) devices increased tremendously. In particular, the Internet of Medical Things (IoMT) and the Industrial Internet of Things (IIoT) expanded dramatically. Resource restrictions on IoT devices and the insufficiency of software security solutions raise the need for smart Hardware-Assisted Security (HAS) solutions. These solutions target one or more of the three C’s of IoT devices: Communication, Control, and Computation. Communication is an essential technology in the development of IoT. Bluetooth is a widely-used wireless communication protocol in small portable devices due to its low energy consumption and high transfer rates. In this work, we propose a supervisory framework to monitor and verify the operation of a Bluetooth system-on-chip (SoC) in real-time. To verify the operation of the Bluetooth SoC, we classify its transmission state in real-time to ensure a secure connection. Our overall classification accuracy is measured as 98.7%. We study both power supply current (IVDD) and RF domains to maximize the classification performance and minimize the overhead of our proposed supervisory system.


Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 81
Author(s):  
Jorge Coelho ◽  
Luís Nogueira

Internet of things (IoT) devices play a crucial role in the design of state-of-the-art infrastructures, with an increasing demand to support more complex services and applications. However, IoT devices are known for having limited computational capacities. Traditional approaches used to offload applications to the cloud to ease the burden on end-user devices, at the expense of a greater latency and increased network traffic. Our goal is to optimize the use of IoT devices, particularly those being underutilized. In this paper, we propose a pragmatic solution, built upon the Erlang programming language, that allows a group of IoT devices to collectively execute services, using their spare resources with minimal interference, and achieving a level of performance that otherwise would not be met by individual execution.


Author(s):  
Manikandakumar Muthusamy ◽  
Karthikeyan Periasamy

Internet of things is a growing technology with many business opportunities and risks. It is strongly believed that IoT will cause a major shift in people's lives similar to how the internet transformed the way people communicate and share information. IoT is becoming popular in the various domains such as smart health, smart cities, smart transport, and smart retail. The security and privacy concerns of IoT are crucial as it connects a large number of devices. Security is a more critical issue that certainly needs to be resolved with a high level of attention, as with an increasing number of users, there would be a need to manage their requests and check authenticity on the cloud-based pattern. Recently, a series of massive distributed denial-of-service attacks have occurred in IoT organizations. Such malicious attacks have highlighted the threats resulting from not enough security in IoT devices together with their overwhelming effects on the internet. This chapter provides an overview of the security attacks with regard to IoT technologies, protocols, and applications.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2533 ◽  
Author(s):  
Massimo Merenda ◽  
Carlo Porcaro ◽  
Demetrio Iero

In a few years, the world will be populated by billions of connected devices that will be placed in our homes, cities, vehicles, and industries. Devices with limited resources will interact with the surrounding environment and users. Many of these devices will be based on machine learning models to decode meaning and behavior behind sensors’ data, to implement accurate predictions and make decisions. The bottleneck will be the high level of connected things that could congest the network. Hence, the need to incorporate intelligence on end devices using machine learning algorithms. Deploying machine learning on such edge devices improves the network congestion by allowing computations to be performed close to the data sources. The aim of this work is to provide a review of the main techniques that guarantee the execution of machine learning models on hardware with low performances in the Internet of Things paradigm, paving the way to the Internet of Conscious Things. In this work, a detailed review on models, architecture, and requirements on solutions that implement edge machine learning on Internet of Things devices is presented, with the main goal to define the state of the art and envisioning development requirements. Furthermore, an example of edge machine learning implementation on a microcontroller will be provided, commonly regarded as the machine learning “Hello World”.


Sign in / Sign up

Export Citation Format

Share Document