scholarly journals Toward scalable in vitro models: a novel experimental and computational pipeline for the identification of cellular metabolic parameters

2021 ◽  
Vol 4 (s1) ◽  
Author(s):  
Piera Mancini ◽  
Ermes Botte ◽  
Chiara Magliaro ◽  
Arti Ahluwalia

Oxygen utilization by cells has a crucial role in the design of advanced in vitro models. The aim of this study is to develop an experimental and computational pipeline for identifying oxygen metabolism parameters. We applied the approach to HepG2 cell monolayer cultures, demonstrating that such parameters depend on cell density.

Toxins ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 628
Author(s):  
Van Nguyen Tran ◽  
Jitka Viktorová ◽  
Tomáš Ruml

The determination of mycotoxins content in food is not sufficient for the prediction of their potential in vivo cytotoxicity because it does not reflect their bioavailability and mutual interactions within complex matrices, which may significantly alter the toxic effects. Moreover, many mycotoxins undergo biotransformation and metabolization during the intestinal absorption process. Biotransformation is predominantly the conversion of mycotoxins meditated by cytochrome P450 and other enzymes. This should transform the toxins to nontoxic metabolites but it may possibly result in unexpectedly high toxicity. Therefore, the verification of biotransformation and bioavailability provides valuable information to correctly interpret occurrence data and biomonitoring results. Among all of the methods available, the in vitro models using monolayer formed by epithelial cells from the human colon (Caco-2 cell) have been extensively used for evaluating the permeability, bioavailability, intestinal transport, and metabolism of toxic and biologically active compounds. Here, the strengths and limitations of both in vivo and in vitro techniques used to determine bioavailability are reviewed, along with current detailed data about biotransformation of mycotoxins. Furthermore, the molecular mechanism of mycotoxin effects is also discussed regarding the disorder of intestinal barrier integrity induced by mycotoxins.


Reproduction ◽  
2010 ◽  
Vol 139 (4) ◽  
pp. 749-757 ◽  
Author(s):  
Gillian Cowan ◽  
Andrew J Childs ◽  
Richard A Anderson ◽  
Philippa T K Saunders

The somatic (Sertoli cell (SC), Leydig cell (LC), and peritubular myoid (PTM) cell) cells play key roles in development of the fetal testis. We established monolayer cultures from second trimester human testes and investigated the pattern of expression of cell-lineage characteristic mRNAs. Expression of some SC-associated genes (SRY, SOX9, WT1, GATA4, and SF1) was detectable up to and including passage 3 (P3), while others (anti-Müllerian hormone; desert hedgehog) present prior to dissociation were not expressed in the cultured cells. Transcripts encoding the androgen receptor were expressed but addition of dihydrotestosterone (DHT) had no impact on expression of mRNAs expressed in SC or LC. Total concentrations of mRNAs encoding smooth muscle actin (ACTA2) and desmin increased from P1 to P3; an increasing proportion of the cells in the cultures were immunopositive for ACTA2 consistent with proliferation/differentiation of PTM cells. In conclusion, somatic cell monolayer cultures were established from human fetal testes; these cultures could form the basis for future studies based on isolation of purified populations of somatic cells and manipulation of gene expression that is difficult to achieve with organ culture systems. Our results suggest that fetal SC do not maintain a fully differentiated phenotype in vitro, yet PTM (ACTA2 positive) cells readily adapt to monolayer culture conditions in the presence of DHT. This culture system provides an opportunity to study the impact of regulatory factors on gene expression in PTM cells, a population thought to play a key role in mediating androgen action within the developing testis.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 441
Author(s):  
Tiffany Cameron ◽  
Tanya Bennet ◽  
Elyn Rowe ◽  
Mehwish Anwer ◽  
Cheryl Wellington ◽  
...  

In recent years, the need for sophisticated human in vitro models for integrative biology has motivated the development of organ-on-a-chip platforms. Organ-on-a-chip devices are engineered to mimic the mechanical, biochemical and physiological properties of human organs; however, there are many important considerations when selecting or designing an appropriate device for investigating a specific scientific question. Building microfluidic Brain-on-a-Chip (BoC) models from the ground-up will allow for research questions to be answered more thoroughly in the brain research field, but the design of these devices requires several choices to be made throughout the design development phase. These considerations include the cell types, extracellular matrix (ECM) material(s), and perfusion/flow considerations. Choices made early in the design cycle will dictate the limitations of the device and influence the end-point results such as the permeability of the endothelial cell monolayer, and the expression of cell type-specific markers. To better understand why the engineering aspects of a microfluidic BoC need to be influenced by the desired biological environment, recent progress in microfluidic BoC technology is compared. This review focuses on perfusable blood–brain barrier (BBB) and neurovascular unit (NVU) models with discussions about the chip architecture, the ECM used, and how they relate to the in vivo human brain. With increased knowledge on how to make informed choices when selecting or designing BoC models, the scientific community will benefit from shorter development phases and platforms curated for their application.


1986 ◽  
Vol 85 (1) ◽  
pp. 133-147
Author(s):  
M.J. Niedbala ◽  
K. Crickard ◽  
R.J. Bernacki

Human mesothelial cells (HMC) cover a variety of serosal surfaces and have been shown to rest upon an underlying subcellular basement membrane in vivo. Bovine corneal endothelial cells produce an extracellular matrix (ECM) in vitro that mimics HMC subcellular basement membrane and was found to modulate HMC adhesion, morphology and proliferation in vitro. Our results indicated that within minutes after plating, a high percentage (greater than 80%) of HMC firmly attached to ECM. Active cellular migration and subsequent proliferation were observed leading to the formation of a well-organized closely apposed cell monolayer. However, when cells were plated on plastic, the rate of cell attachment was much lower and the proliferative rate of HMC grown on plastic also was strikingly lower (exponential doubling time 4.3 days) than that of cells grown on ECM (exponential doubling time 2.4 days). Cells upon reaching confluency on plastic were markedly enlarged as compared to confluent cells grown on ECM. These observations corroborated differences in final cell density where it was noted that HMC cultured on ECM demonstrated a 10-fold greater final cell density as compared to cells grown on plastic. Results from these studies illustrate the fact that phenotypic expression as well as proliferative responsiveness of HMC can be modulated by adhesive interactions with preformed ECM.


Physiology ◽  
1990 ◽  
Vol 5 (2) ◽  
pp. 75-79
Author(s):  
R Montesano ◽  
M Pepper ◽  
L Orci

Angiogenesis, the formation of new capillary blood vessels, plays a crucial role in a variety of physiological and pathological processes but until recently could only be studied in animal models. Newly developed in vitro models of angiogenesis provide an opportunity for experimental dissection of molecular mechanisms of neovascularization.


2014 ◽  
Vol 226 (06) ◽  
Author(s):  
D William ◽  
M Linnebacher ◽  
CF Classen

Author(s):  
Kavitha K ◽  
Asha S ◽  
Hima Bindu T.V.L ◽  
Vidyavathi M

The safety and efficacy of a drug is based on its metabolism or metabolite formed. The metabolism of drugs can be studied by different in vitro models, among which microbial model became popular. In the present study, eight microbes were screened for their ability to metabolize phenobarbital in a manner comparable to humans with a model to develop alternative systems to study human drug metabolism. Among the different microbes screened, a filamentous fungi Rhizopus stolonifer metabolized phenobarbital to its metabolite which is used for further pharmacological and toxicological studies. The transformation of phenobarbital was identified by high- performance liquid chromatography (HPLC). Interestingly, Rhizopus stolonifer sample showed an extra metabolite peak at 3.11min. compared to its controls. The influence of different carbon sources in media used for growth of fungus, on metabolite production was studied, to find its effect in production of metabolite as the carbon source may influence the growth of the cell.


Sign in / Sign up

Export Citation Format

Share Document