scholarly journals Salmonella in Indian ready-to-cook poultry: antibiotic resistance and molecular characterization

2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Raj Kamal Gautam ◽  
Aarti S. Kakatkar ◽  
Manisha N. Karani ◽  
Shashidhar R. ◽  
Jayant R. Bandekar

The availability and popularity of processed, ready-to-cook (RTC) poultry products are increasing in India. Though fresh poultry is known to be contaminated with Salmonella, the prevalence of this foodborne pathogen in RTC poultry products is not reported. Eighty-seven chilled and frozen RTC poultry samples of 4 different brands obtained from supermarkets and departmental stores in Mumbai were analyzed for the presence of Salmonella. The prevalence of Salmonella was higher (51%) in chilled RTC samples as compared to the frozen RTC samples (5%). The frozen RTC samples of one brand were free from Salmonella. S. Typhimurium (75.2%) was the most prevalent serovar, followed by S. Enteritidis (23%) and S. Weltevreden (1.7%). A high percentage (81.4%) of the isolates were found to be resistant to 5 or more antibiotics and class 1 integron, which has been shown to confer multi-drug resistance, was detected in 69.9% of the isolates. Multiple antibiotic resistance index of isolates was high (0.6) indicating the indiscriminate use of antibiotics during poultry farming. High genetic diversity was observed among the Salmonella serovars based on Pulsed Field Gel Electrophoresis profiles. Results showed the presence of multi-drug resistant Salmonella serovars in processed, chilled RTC poultry products marketed in Mumbai, India.

2020 ◽  
Vol 20 (2) ◽  
pp. 160-166
Author(s):  
Seyedeh Hanieh Eshaghi Zadeh ◽  
Hossein Fahimi ◽  
Fatemeh Fardsanei ◽  
Mohammad Mehdi Soltan Dallal

Background: Salmonellosis is a major food-borne disease worldwide. The increasing prevalence of antimicrobial resistance among food-borne pathogens such as Salmonella spp. is concerning. Objective: The main objective of this study is to identify class 1 integron genes and to determine antibiotic resistance patterns among Salmonella isolates from children with diarrhea. Methods: A total of 30 Salmonella isolates were recovered from children with diarrhea. The isolates were characterized for antimicrobial susceptibility and screened for the presence of class 1 integron genes (i.e. intI1, sulI1, and qacEΔ1). Results: The most prevalent serotype was Enteritidis 36.7%, followed by Paratyphi C (30%), and Typhimurium (16.7%). The highest rates of antibiotic resistance were obtained for nalidixic acid (53.3%), followed by streptomycin (40%), and tetracycline (36.7%). Regarding class 1 integrons, 36.7%, 26.7%, and 33.3% of the isolates carried intI1, SulI, and qacEΔ1, respectively, most of which (81.8%) were multidrug-resistant (MDR). Statistical analysis revealed that the presence of class 1 integron was significantly associated with resistance to streptomycin and tetracycline (p = 0.042). However, there was no association between class 1 integron and other antibiotics used in this study (p > 0.05). Conclusion: The high frequency of integron class 1 gene in MDR Salmonella strains indicates that these mobile genetic elements are versatile among different Salmonella serotypes, and associated with reduced susceptibility to many antimicrobials.


2021 ◽  
pp. 117930
Author(s):  
Zahra shamsizadeh ◽  
Mohammad Hassan Ehrampoush ◽  
Mahnaz Nikaeen ◽  
Farzaneh mohammadi ◽  
Mehdi Mokhtari ◽  
...  

2017 ◽  
Vol 62 (No. 3) ◽  
pp. 169-177 ◽  
Author(s):  
TH Chung ◽  
SW Yi ◽  
BS Kim ◽  
WI Kim ◽  
GW Shin

The present study sought to identify pathogens associated with septicaemia in the Chinese soft-shelled turtle (Pelodiscus sinensis) and to characterise antibiotic resistance in these pathogens. Twenty-three isolates recovered from the livers of diseased soft-shelled turtles were genetically identified as Aeromonas hydrophila (n = 8), A. veronii (n = 3), Citrobacter freundii (n = 4), Morganella morganii (n = 3), Edwardsiella tarda (n = 2), Wohlfahrtiimonas chitiniclastica (n = 1), Chryseobacterium sp. (n = 1), and Comamonas sp. (n = 1). Most isolates (n = 21) were resistant to ampicillin whereas a low percentage of isolates was susceptible to aminoglycosides (amikacin, gentamicin, and tobramycin). PCR assays and sequence analysis revealed the presence of the qnrS2 and bla<sub>TEM</sub> antibiotic resistance genes in all isolates. The bla<sub>DHA-1</sub>, bla<sub>CTX-M-14</sub> and bla<sub>CMY-2</sub> genes were harboured by 17.4% (n = 4), 13.5% (n = 3) and 8.7% (n = 2) of the strains, respectively. One or more tetracycline resistance genes were detected in 60.9% (n = 14) of the isolates. Four isolates (17.4%) harboured single or multiple class 1 integron cassettes. Collectively, a variety of bacterial pathogens were involved in the occurrence of septicaemia in Chinese soft-shelled turtles and most of the isolates had multi-antibiotic resistant phenotypes. To our knowledge, the present report is the first to identify W. chitiniclastica and Comamonas sp. as causes of septicaemia in soft-shelled turtles and the first to identify Aeromonas spp. with bla<sub>CTX-M-14</sub> and bla<sub>DHA-1</sub> resistance genes.


1999 ◽  
Vol 43 (12) ◽  
pp. 2925-2929 ◽  
Author(s):  
Lydia Bass ◽  
Cynthia A. Liebert ◽  
Margie D. Lee ◽  
Anne O. Summers ◽  
David G. White ◽  
...  

ABSTRACT Antibiotic resistance among avian bacterial isolates is common and is of great concern to the poultry industry. Approximately 36% (n = 100) of avian, pathogenic Escherichia coli isolates obtained from diseased poultry exhibited multiple-antibiotic resistance to tetracycline, oxytetracycline, streptomycin, sulfonamides, and gentamicin. Clinical avian E. coli isolates were further screened for the presence of markers for class 1 integrons, the integron recombinase intI1 and the quaternary ammonium resistance gene qacEΔ1, in order to determine the contribution of integrons to the observed multiple-antibiotic resistance phenotypes. Sixty-three percent of the clinical isolates were positive for the class 1 integron markersintI1 and qacEΔ1. PCR analysis with the conserved class 1 integron primers yielded amplicons of approximately 1 kb from E. coli isolates positive for intI1 andqacEΔ1. These PCR amplicons contained the spectinomycin-streptomycin resistance gene aadA1. Further characterization of the identified integrons revealed that many were part of the transposon Tn21, a genetic element that encodes both antibiotic resistance and heavy-metal resistance to mercuric compounds. Fifty percent of the clinical isolates positive for the integron marker gene intI1 as well as for theqacEΔ1 and aadA1 cassettes also contained the mercury reductase gene merA. The correlation between the presence of the merA gene with that of the integrase and antibiotic resistance genes suggests that these integrons are located in Tn21. The presence of these elements among avianE. coli isolates of diverse genetic makeup as well as inSalmonella suggests the mobility of Tn21 among pathogens in humans as well as poultry.


Author(s):  
Jinru Chen ◽  
Joycelyn Quansah

Fresh produce-borne enteric bacterial pathogens with resistance to antibiotics have posed serious challenges to food safety and public health worldwide.  This study examined the antibiotic resistance profile of Salmonella enterica (n=33), previously isolated from exotic and indigenous leafy green vegetable samples (n=328) collected from 50 vegetable farms in 12 farming areas and 37 vegetable sellers in 4 market centers in Accra, Ghana during the period of March 2016 to March 2017, and determined the distribution of integrons among antibiotic-resistant isolates.  The susceptibility of the Salmonella isolates to 12 antibiotics was assayed using the standard disc diffusion assay.  The minimum inhibitory concentrations (MICs) of the five most resisted antibiotics were determined using the twofold macro dilution method.  PCR assay was used to detect the presence of integrons in Salmonella cells, and PCR product with amplified integron gene cassette was purified and sequenced using the Sanger sequencing technology.  The Salmonella isolates used in the study resisted at least one tested antibiotic, and multi-drug resistant (MDR) isolates were 30.3% (10/33).  Most isolates (81.8%) were resistant to sulfisoxazole.  The MICs of tetracycline, cefoxitin, streptomycin, ampicillin, and sulfisoxazole were 16, 32, 64, 64, and &gt; 1,024 µg/ml, respectively.  A total of five different patterns of MDR were observed among the Salmonella isolates, and the common MDR patterns were AAuFox (30.3%) and AAuFoxSSu (18.1%).  One out of the 33 (3.0%) Salmonella isolates tested positive for class 1 integron with a gene cassette of about 800 bp.  Nucleotide sequencing revealed the class 1 integron carried a single gene dfrA7 .  Future studies are needed to confirm whether the consumption of contaminated leafy green vegetables is a route of acquiring antibiotic-resistant Salmonella by consumers in Accra, Ghana.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 450 ◽  
Author(s):  
Ocean Thakali ◽  
Sarmila Tandukar ◽  
John Brooks ◽  
Samendra Sherchan ◽  
Jeevan Sherchand ◽  
...  

Urban rivers affected by anthropogenic activities can act as reservoirs of antibiotic resistance genes (ARGs). This study aimed to describe the occurrence of selected ARGs (blaTEM, ermF, mecA, and tetA) and a class 1 integron (intI1) in an urban river in Nepal. A total of 18 water samples were collected periodically from upstream, midstream, and downstream sites along the Bagmati River over a 1-year period. All ARGs except mecA and intI1 were consistently detected by a quantitative polymerase chain reaction in the midstream and downstream sites, with concentrations ranging from 3.1 to 7.8 log copies/mL. ARG abundance was significantly lower at the upstream site (p < 0.05), reflecting the impact of anthropogenic activities on increasing concentrations of ARGs at midstream and downstream sites. Our findings demonstrate the presence of clinically relevant ARGs in the urban river water of Nepal, suggesting a need for mitigating strategies to prevent the spread of antibiotic resistance in the environment.


2020 ◽  
Vol 11 ◽  
Author(s):  
Masaki Shintani ◽  
Eman Nour ◽  
Tarek Elsayed ◽  
Khald Blau ◽  
Inessa Wall ◽  
...  

IncP-1 plasmids, first isolated from clinical specimens (R751, RP4), are recognized as important vectors spreading antibiotic resistance genes. The abundance of IncP-1 plasmids in the environment, previously reported, suggested a correlation with anthropogenic pollution. Unexpectedly, qPCR-based detection of IncP-1 plasmids revealed also an increased relative abundance of IncP-1 plasmids in total community DNA from the rhizosphere of lettuce and tomato plants grown in non-polluted soil along with plant age. Here we report the successful isolation of IncP-1 plasmids by exploiting their ability to mobilize plasmid pSM1890. IncP-1 plasmids were captured from the rhizosphere but not from bulk soil, and a high diversity was revealed by sequencing 14 different plasmids that were assigned to IncP-1β, δ, and ε subgroups. Although backbone genes were highly conserved and mobile elements or remnants as Tn501, IS1071, Tn402, or class 1 integron were carried by 13 of the sequenced IncP-1 plasmids, no antibiotic resistance genes were found. Instead, seven plasmids had a mer operon with Tn501-like transposon and five plasmids contained putative metabolic gene clusters linked to these mobile elements. In-depth sequence comparisons with previously known plasmids indicate that the IncP-1 plasmids captured from the rhizosphere are archetypes of those found in clinical isolates. Our findings that IncP-1 plasmids do not always carry accessory genes in unpolluted rhizospheres are important to understand the ecology and role of the IncP-1 plasmids in the natural environment.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Jianhua Qiu ◽  
Zhiyu Jiang ◽  
Zijing Ju ◽  
Xiaonan Zhao ◽  
Jie Yang ◽  
...  

In this study, the prevalence, phenotypes, and clonal relationships ofEscherichia coli(E. coli) strains isolated from minks were investigated. In July 2017, a total of 62 fresh faecal swab samples were randomly collected from one large-scale mink farm in Zhucheng, Shandong Province, China. In all the samples, 50E. colistrains were isolated and then assigned to serotyping, antimicrobial susceptibility test, detection of antimicrobial resistance genes and the Class 1 integrons, and multilocus sequence typing (MLST). Four pathogenic serotypes were identified among all the isolates, while the most common serotype was enterohemorrhagicE. coliO104:H4 (6.0 %). Antimicrobial sensitivity testing revealed that most isolates were susceptible to cefoxitin (96.0 %) and amikacin (82.0 %), while most isolates were resistant to ampicillin (92.0 %) and tetracycline (90.0 %). An analysis of the nucleotide sequences revealed that 7 isolates (14.0%) carried 4 types of Class 1 integron cassette, includingdfrA27+aadA2+qnrA(57.1%),dfrA17+aadA5(14.3%),dfrA12+aadA2(14.3%), anddfrA1+aadA1(14.3%). PCR screening showed that 14 antibiotic resistance genes were presented in 50 isolates, while the most prevalent resistance gene wasqnrS, which was detected in 60.0 % of isolates, followed bysul2(40.0%) andoqxA(38.0%). MLST analysis showed that 32 sequence types (STs) were identified, while ST46 was the predominant genotype among all isolates. Clonal complex 3 (CC3) was dominant. Compared with 340 humanE. coliSTs reported in China, the ST10 clonal complex, known as the largest human clonal complex, was also found in the 50 minkE. coliisolates. Meanwhile, mink-derived strain ST206 formed a new clonal complex, CC206, which was different from human ST strains. Our results showed that farmed minks could be reservoirs of antimicrobial-resistantE. coliwith Class 1 integron cassettes and resistance genes, which were likely to pose a threat to public health. Therefore, continuous inspections and monitoring ofE. coliin minks are essential for detecting and controlling emergingE. coliwith different serovars as well as antibiotic resistance.


Sign in / Sign up

Export Citation Format

Share Document