scholarly journals Coupling mechanism between geoacoustic emission and electromagnetic anomalies prior to earthquakes

2014 ◽  
Vol 3 (1) ◽  
Author(s):  
Viacheslav Pilipenko ◽  
Evgeniy Fedorov

Micro-cracking in the earthquake preparation zone is accompanied by the generation of acoustic emission (AE). Even low-intensity AE can essentially modify the underground fluid dynamics owing to the influence of high-frequency acoustic field on filtration process. Laboratory experiments show that acoustic impact on pour sample destroys a film with bounded water and results in a steep increase of its permeability up to 2 orders of magnitude. Impulsive acoustic fields also decrease the effective viscosity of the fluid. The occurrence in the crust under pressure of a region with distinct hydrodynamic and electrokinetic parameters will result in an appearance of anomalous telluric and magnetic fields on the surface above. This effect is estimated analytically using a simple model with an ellipticshaped inhomogeneity. The suggested hypothesis about possible coupling between AE and geoelectrical anomalies needs observational verification.

2007 ◽  
Vol 37 (6) ◽  
pp. 1566-1583 ◽  
Author(s):  
W. D. Smyth ◽  
J. R. Carpenter ◽  
G. A. Lawrence

Abstract Direct simulations are used to study turbulence and mixing in Holmboe waves. Previous results showing that mixing in Holmboe waves is comparable to that found in the better-known Kelvin–Helmholtz (KH) billows are extended to cover a range of stratification levels. Mixing efficiency is discussed in detail, as are effective diffusivities of buoyancy and momentum. Entrainment rates are compared with results from laboratory experiments. The results suggest that the ratio of the thicknesses of the shear layer and the stratified layer is a key parameter controlling mixing. With that ratio held constant, KH billows mix more rapidly than do Holmboe waves. Among Holmboe waves, mixing increases with increasing density difference, despite the fact that the transition to turbulence is delayed or prevented entirely by the stratification. Results are summarized in parameterizations of the effective viscosity and diffusivity of Holmboe waves.


2021 ◽  
Author(s):  
Yujian Ren ◽  
Jingxiang Li ◽  
Yuanzhe Dong ◽  
Dong Jin ◽  
Shengdun Zhao

Abstract High efficiency and good section quality are two main objectives of metal bar cropping. A suitable control method can help to achieve both goals. An investigation of the control method of low-cycle fatigue cropping (LCFC) based on the acoustic emission (AE) technique has been proposed in this study. Ring-down counts and kurtosis are used to monitor the whole process of LCFC. The results showed that kurtosis is more suitable for monitoring the LCFC process and as a critical parameter to optimize the control method than ring-down counts in the noisy factory environment.Moreover, three types of materials are studied in this experiment; by combine with the AE results, macroscopic images and microscopic images of sections, characteristics of various LCFC stages are obtained. The results also indicated reduce the area of the transient fracture zone is the key to improve the section quality. Reducing the load frequency before the unstable crack propagation stage will beneficial to realize the goals. Based on the evaluation of kurtosis, an optimized control method is presented, and two control parameters: transient time T and the critical value of the slope of kurtosis C are determined. For 16Mn, 1045 and Al 6061, the T is 5s, 10s, and 1s, respectively. For 16Mn, 1045, and Al 6061, the C is 100, 300, and 0, respectively. Two parameters, h and S, are used to evaluate the section quality and four control strategies are compared. The results indicate the optimal control methods can improve the section quality effectively. The influence trend of reducing loading frequency is investigated by further comparison. It can be seen as the frequency decreases, the efficiency of the section quality improving decreases. In order to realize the optimal results, different control strategies are adopted for different materials. Strategy 1 (high frequency is 20Hz,high frequency thought the whole process), strategy 2 (high frequency is 20Hz,low frequency is 8.33Hz), and strategy 3 (high frequency is 20Hz,low frequency is 6.67Hz) is suitable for Al 6061, 1045, and 16Mn, respectively.


2021 ◽  
pp. 35-44
Author(s):  
Ю.Г. Матвиенко ◽  
И.Е. Васильев ◽  
Д.В. Чернов ◽  
В.И. Иванов ◽  
С.В. Елизаров

The accuracy of the location of acoustic emission (AE) sources in the concentrator zones (central holes 5 mm in diameter) located at a distance of 40 mm from the receiving transducers during tensile tests of steel, aluminum alloy and composite flat specimens with dimensions of 550x50x4 mm was evaluated. Calculated speed dependence of propagation of pulses on the level of their amplitude and the partial energy of the high-frequency components of the spectrum is studied. With the threshold method of signal registration, the error in the location of AE event sources arising in the near zone of the receiving transducers at a distance 𝛥L<0.1 m can significantly exceed 10% relative to the base size (B) of the location area, when B<0.5 m. Moreover, with a decrease in the distance 𝛥L<0.05 m, the level of possible error will increase, reaching 20-30% relative to the basic size of the antenna array, when recording pulses with an amplitude level um<60 dB and a fraction of the energy of high-frequency spectrum components not exceeding 10%.


1973 ◽  
Vol 12 (64) ◽  
pp. 144-146 ◽  
Author(s):  
W. F. St. Lawrence ◽  
T. E. Lang ◽  
R.L. Brown ◽  
C. C. Bradley

AbstractAcoustic emissions in the audio spectrum are reported from observations of laboratory experiments conducted on snow samples in uniaxial compression. A number of tests show the pattern of acoustic emissions to be a function of the rate of deformation. Over the frequency range 20 to 7 000 Hz acoustic emissions are associated with rates of deformation corresponding to brittle fracture of the snow sample. Though probably present, no acoustic emissions were detected from samples deforming plastically.


1997 ◽  
Vol 45 (1) ◽  
pp. 81-96 ◽  
Author(s):  
A. Mistriotis ◽  
T. De Jong ◽  
M.J.M. Wagemans ◽  
G.P.A. Bot

The basic concepts of CFD are presented in relation to applications in modelling the ventilation process and the resulting indoor climate of agricultural buildings. The validity and the advantages of this numerical technique are presented using 3 examples. Firstly the pressure coefficients along the roof of a 7-span Venlo-type greenhouse were calculated and compared with the corresponding experimental values. Next, the ventilation process in a single-span greenhouse was investigated and the results were compared to laboratory experiments. Finally, the use of CFD as a design tool for more efficient ventilation systems was demonstrated for the case of a broiler house.


2021 ◽  
Vol 11 (17) ◽  
pp. 8236
Author(s):  
Le Zhang ◽  
Hongguang Ji ◽  
Liyuan Liu ◽  
Jiwei Zhao

To study the crack evolution law and failure precursory characteristics of deep granite rocks in the process of deformation and failure under high confining pressure, granite samples obtained from a depth of 1150 m are tested using a TAW-2000 triaxial hydraulic servo testing machine and a PCI-II acoustic emission monitoring system. Based on the stress–strain curve and IET function, the loading process of the sample is divided into five stages: crack closure, linear elastic deformation, microcrack generation and development, macroscopic fracture generation and energy surge, and post-peak failure. The evolution trend and fracture evolution law of the acoustic emission signal event interval function in different stages are analyzed. In particular, the signals with an amplitude greater than 85 dB, a peak frequency greater than 350 kHz, and a frequency centroid greater than 275 kHz are defined as the failure precursor signals before the rock reaches the peak stress. The defined precursor signal conditions agree well with the experimental results. The time–frequency analysis and wavelet packet decomposition of the precursor signal are performed on the extracted characteristic signal of the failure precursor. The results show that the time-domain signal is in the form of a continuous waveform, and the frequency-domain waveform has multi-peak coexistence that is mainly concentrated in the high-frequency region. The energy distribution obtained by the wavelet packet decomposition of the characteristic signal is verified with the frequency-domain waveform. The energy distribution of the signal is mainly concentrated in the 343.75–375 kHz frequency band, followed by the 281.25–312.5 kHz frequency band. The energy proportion of the high-frequency signal increases with the confining pressure.


2021 ◽  
Vol 2113 (1) ◽  
pp. 012016
Author(s):  
Fei Song ◽  
Likun Peng ◽  
Jia Chen ◽  
Benmeng Wang

Abstract In order to realize the nondestructive testing (NDT) of the internal leakage fault of hydraulic spool valves, the internal leakage rate must be predicted by AE (acoustic emission) technology. An AE experimental platform of internal leakage of hydraulic spool valves is built to study the characteristics of AE signals of internal leakage and the relationship between AE signals and leakage rates. The research results show the AE signals present a wideband characteristic. The main frequencies are concentrated in 30~50 kHz and the peak frequency is around 40 kHz. When the leakage rate is large, there are significant signal characteristics appearing in the high frequency band of 75~100 kHz. The exponent of the root mean square(RMS) of AE signals is positively correlated with the exponent of the leakage rate only if the leakage rate is greater than 2~3 mL/min. This find could be used to predict the internal leakage rate of hydraulic spool valves.


2019 ◽  
Vol 105 (5) ◽  
pp. 759-765 ◽  
Author(s):  
Alexey A. Ostapchuk ◽  
Kseniya G. Morozova ◽  
Dmitry V. Pavlov

Presented are the results of laboratory experiments on investigating manifestations of acoustic emission (AE) of a gouge-filled fault during stick-slip. The laboratory experiments were held at the slider-model setup, when a granite block slides along a rough granite base under normal and shear loads. In the course of experiments we altered the structure of the two-component filler of the fault and focused on variations of the AE parameters. The kinematic parameters of fault slip events in all the realizations remained approximately the same. The eff ect of gouge structure on the statistics of AE has been revealed. An alteration of proportion of quartz sand / glass beads in the filler of the fault was accompanied by an alteration of the b-value of frequency-energy distribution from 0.53 to 0.85, and the p-value of Omori law from 1.00 to 2.06. Also, it has been demonstrated that the nucleation of a slip event is accompanied by an alteration of the mechanism of AE generation – at the initial stage the 'tensile crack' signals prevailed, while at the final stage – the 'shear crack' signals did. The alteration of AE genesis manifested vividly in a corresponding alteration of the emitted waveforms for all the realizations.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Marek Kočiško ◽  
Petr Baron ◽  
Monika Telíšková ◽  
Jozef Török ◽  
Anna Bašistová

The paper presents the results of an experimental study aimed at assessing the correlation between the measurement of dynamic parameters (vibration, high-frequency vibration, and acoustic emission) and the analysis of friction mode and the state of lubrication of the contact surfaces of two gearboxes in the turbo-generator assembly (high-speed single-body steam turbine—gearbox—generator) with the transmission power of no more than 50 MW. The analysis confirmed the assumption of a significant correlation of the monitored high-frequency vibration signal with the unsatisfactory engagement of the gear teeth. Through vibration analysis, an increased level of the tooth vibration component and vibration multiples with increased acoustic emission were identified in gearbox operation. The gear oil of one of the gearboxes examined showed a loss of additive elements in the real operation of the contact surfaces of the teeth engagement. The trend analysis confirmed the complexity of the monitored transmission operation in terms of the friction mode and the influence of the oil quality on the state of the tooth flank microgeometry.


Sign in / Sign up

Export Citation Format

Share Document