scholarly journals Flow Cytometry Method as a Diagnostic Tool for Pleural Fluid Involvement in a Patient with Multiple Myeloma

2012 ◽  
Vol 4 (1) ◽  
pp. e2012063 ◽  
Author(s):  
Muzaffer Keklik ◽  
Serdar Sivgin ◽  
Cigdem Pala ◽  
Celalettin Eroglu ◽  
Gulsah Akyol ◽  
...  

Multiple myeloma is a malignant proliferation of plasma cells that mainly affects bone marrow. Pleural effusions secondary to pleural myelomatous involvement have rarely been reported in the literature. As it is rarely detected, we aimed to report a case in which pleural effusion of a multiple myeloma was confirmed as true myelomatous involvement by flow cytometry method. A 52-years old man presented to our clinic with chest and back pain lasting for 3 months. On the chest radiography, pleural fluid was detected in left hemithorax. Pleural fluid flow cytometry was performed. In the flow cytometry, CD56, CD38 and CD138 found to be positive, while CD19 was negative. True myelomatous pleural effusions are very uncommon, with fewer than 100 cases reported worldwide. Flow cytometry is a potentially useful diagnostic tool for clinical practice. We presented our case; as it has been rarely reported, although flow cytometer is a simple method for detection of pleural fluid involvement in multiple myeloma.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3457-3457 ◽  
Author(s):  
Eric D. Hsi ◽  
Roxanne Steinle ◽  
Balaji Balasa ◽  
Aparna Draksharapu ◽  
Benny Shum ◽  
...  

Abstract Background: To identify genes upregulated in human memory B and plasma cells, naïve B cell cDNA was subtracted from plasma cell and memory B cell cDNA. One gene that was highly expressed in plasma cells encodes CS1 (CD2 subset 1, CRACC, SLAMF7), a cell surface glycoprotein of the CD2 family. CS1 was originally identified as a natural killer (NK) cell marker. Monoclonal antibodies (mAbs) specific for CS1 were used to validate CS1 as a potential target for the treatment of multiple myeloma (MM). Methods: Anti-CS1 mAbs were generated by immunizing mice with a protein comprising of the extracellular domain of CS1. Two clones, MuLuc63 and MuLuc90, were selected to characterize CS1 protein expression in normal and diseased tissues and blood. Fresh frozen tissue analysis was performed by immunohistochemistry (IHC). Blood and bone marrow analysis was performed using flow cytometry with directly conjugated antibodies. HuLuc63, a novel humanized anti-CS1 mAb (derived from MuLuc63) was used for functional characterization in non-isotopic LDH-based antibody-dependent cellular cytotoxicity (ADCC) assays. Results: IHC analysis showed that anti-CS1 staining occurred only on mononuclear cells within tissues. The majority of the mononuclear cells were identified as tissue plasma cells by co-staining with anti-CD138 antibodies. No anti-CS1 staining was detected on the epithelia, smooth muscle cells or vessels of any normal tissues tested. Strong anti-CS1 staining was also observed on myeloma cells in 9 of 9 plasmacytomas tested. Flow cytometry analysis of whole blood from both normal healthy donors and MM patients showed specific anti-CS1 staining in a subset of leukocytes, consisting primarily of CD3−CD(16+56)+ NK cells, CD3+CD(16+56)+ NKT cells, and CD3+CD8+ T cells. Flow cytometry of MM bone marrow showed a similar leukocyte subset staining pattern, except that strong staining was also observed on the majority of CD138+CD45−/dim to + myeloma cells. No anti-CS1 binding was detected to hematopoietic CD34+CD45+ stem cells. To test if antibodies towards CS1 may have anti-tumor cell activity in vitro, ADCC studies using effector cells (peripheral blood mononuclear cells) from 23 MM patients and L363 MM target cells were performed. The results showed that HuLuc63, a humanized form of MuLuc63, induced significant ADCC in a dose dependent manner. Conclusions: Our study identifies CS1 as an antigen that is uniformly expressed on normal and neoplastic plasma cells at high levels. The novel humanized anti-CS1 mAb, HuLuc63, exhibits significant ADCC using MM patient effector cells. These results demonstrate that HuLuc63 could be a potential new treatment for multiple myeloma. HuLuc63 will be entering a phase I clinical study for multiple myeloma.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3153-3153
Author(s):  
Christopher Richard Marlein ◽  
Rebecca H Horton ◽  
Rachel E Piddock ◽  
Jayna J Mistry ◽  
Charlotte Hellmich ◽  
...  

Abstract Background Multiple myeloma (MM) is malignancy highly reliant on its microenvironment. In this study, we investigated whether mitochondrial transfer occurred between bone marrow stromal cells (BMSC) and malignant plasma cells. We then used our observations as a platform to investigate the mechanisms controlling pro-tumoral mitochondrial transfer with a view to identifying druggable targets. Methods Primary MM cells were obtained from patients' bone marrow after informed consent and under approval from the United Kingdom Health Research Authority. Animal experiments were conducted under approvals from the UK Home Office and the University of East Anglia Animal Welfare and Ethics Review Board. Primary BMSC were also obtained from patient bone marrow, using adherence and characterised using flow cytometry. Mitochondrial transfer was assessed using two methods; a MitoTracker Green based staining of the BMSC (in-vitro), rLV.EF1.AcGFP-Mem9 labelling of the MM plasma membrane with MitoTracker CMXRos staining of the BMSC (in-vitro) and an in vivo MM NSG xenograft model. CD38 expression on MM cells was tested after ATRA treatment, using RT-qPCR and flow cytometry. Mitochondrial transfer levels were assessed when CD38 was over expressed using ATRA or inhibited using lentivirus targeted shRNA. Results We report that mitochondria are transferred from BMSC to MM cells. First, we cultured MM cells on MitoTracker Green labelled BMSC and found increased MitoTracker Green fluorescence in the MM cells. We then transduced MM with rLV.EF1.AcGFP-Mem9 lentivirus and stained BMSC with MitoTracker CMXRos and used wide field microscopy to show MM derived tunnelling nanotubles (TNT) formed between MM cells and BMSC, with red mitochondria located within the GFP-tagged TNT. Next, we engrafted the MM cell lines MM1S and U266 into NSG mouse, after isolation we detected the presence of mouse mitochondrial DNA in the purified MM population. Together, these data show that mitochondria are transferred from BMSC to MM cells. We next analysed OXPHOS levels in MM cells grown on BMSC, using the seahorse extracellular flux assay. We found that the MM cells had increased levels of OXPHOS after culture with BMSC, which was also the case for MM cell lines analysed after isolation from NSG mice, showing the micro-environment of MM can alter the metabolism of the malignant cell. To examine whether the mitochondrial transfer process was controlled by CD38, we knocked down CD38 in MM cells using lentiviral targeted shRNA. We found reduced levels of mitochondrial transfer in CD38KD MM cells, with a consequent reduction of OXPHOS in the malignant cells. Finally, as ATRA has previously been shown to increase CD38 expression in AML, we next quantified CD38 mRNA and surface glycoprotein level on malignant plasma cells with and without ATRA treatment. We found ATRA increased CD38 expression at the mRNA and protein levels and this resulted in an increase in mitochondrial transfer from BMSC to MM cells. Conclusion Here we show that CD38 mediated mitochondrial transfer in the MM micro-environment forms part of the malignant phenotype of multiple myeloma. This finding develops our understanding of the mechanisms which underpin the efficacy of CD38 directed therapy in MM. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5014-5014
Author(s):  
Hong Liu ◽  
Constance M. Yuan ◽  
Raul C. Braylan ◽  
Myron N. Chang ◽  
John R. Wingard ◽  
...  

Abstract The persistence of abnormal neoplastic plasma cells (APC) detectable in the bone marrow by flow cytometry at more than 3 months after autografting for multiple myeloma (MM) has been reported to predict early disease progression. In this study, we retrospectively reviewed the flow cytometric data from bone marrow aspirates of MM patients before and after autologous stem cell transplantation (ASCT). Light scatter properties and CD38 expression were used to identify plasma cells, and CD19/CD45/CD56 further distinguished normal plasma cells (NPC) from APC. Conventional response criteria (Blade criteria) and survival data were also collected. Forty-seven (47) patients treated with the same conditioning regimen were screened. Median follow up from ASCT was 19 months. After ASCT, 66% (31/47) patients achieved complete remission (CR)/very good partial remission (VGPR), as compared to only 36% (17/47) prior to ASCT. In 39 patients with data before and after ASCT, all 39 (100%) had a detectable abnormal plasma cell population identified phenotypically by flow cytometry prior to ASCT. Of these patient, 18/39 (46%) had greater than 30 APC and these patients had significantly shorter PFS independent of other covariates (1-sided P=0.036, 2 sided P=0.072, logrank). Twenty-six out of 39 patients (67%) also had detectable NPC. Following ASCT, the number of patients with detectable NPC increased to 35/39 (89%), while 3/39 (8%) had no detectable NPC and 1/39 (3%) had neither NPC or APC. The proportion of APC decreased significantly after transplant (81% prior to transplant vs. 59% post-transplant, P=0.008, 2 tailed t-test). Patients with a APC to NPC ratio < 1 post transplant has higher PFS rate at 2 year (54%) when compared to patients with higher APC/NPC ratio (29% PFS at 2 year), however, the difference is not statistically significant. In addition to the presence of APC, the ratio of APC to NPC, age, beta-2 microglobulin levels, and the presence of normal immunoglobulin levels were analyzed. Patients who achieved CR/VGPR after transplant had significantly longer PFS (23 months vs. 11 months, P=0.03). All other covariates were not found to be significant. Because only 10 deaths were observed, covariate analysis for OS was not feasible. In conclusion, the recovery of NPC after ASCT is seen in a substantial propotion of patients with a trend towards better PFS in patients with low APC/NPC ratio. On the other hand, the presence of a significant population of APC (> 30) prior to transplant appears to correlate with poorer PFS in MM patients.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 951-951 ◽  
Author(s):  
Abdel Kareem Azab ◽  
Phong Quang ◽  
Feda Azab ◽  
Costas M Pitsillides ◽  
John T Patton ◽  
...  

Abstract Abstract 951 INTRODUCTION: Multiple Myeloma (MM) is characterized by widespread disease at diagnosis with the presence of multiple lytic lesions and disseminated involvement of the bone marrow (BM), implying that the progression of MM involves a continuous re-circulation of the MM cells in the peripheral blood and re-entrance into the BM. Selectins are adhesion molecules expressed by activated endothelium of venules and leukocytes, and are involved in the primary interaction of lymphocytes with the endothelium of blood vessels. The binding of selectins serves as a biologic brake, making leukocyte quickly decelerate by rolling on endothelial cells, as the first step of extravasation. In this study, we have investigated the role of selectins and their ligands in the regulation of homing of MM Cells to the BM and the therapeutic implications of this role. METHODS AND RESULTS: We have used flow cytometry to characterize the expression of E, L and P-selectins and their ligands on MM cell lines, patient samples and on plasma cells from normal subjects. We found that all MM cell lines and patient samples showed high expression of L and P, but little of no E-selectin. While normal plasma cells showed low expression of all selectins and ligands.(give numbers) A pan-selectin inhibitor GMI-1070 (GlycoMimetics Inc., Gaithersburg, MD) inhibited the interaction of recombinant selectins with the selectin-ligands on the MM cells in a dose response manner. We have tested the role of the selectins and their ligands on the adhesion of MM cells to endothelial cells and found that MM cells adhered preferentially to endothelial cells expressing P-selectin compared to control endothelial cells and endothelial cells expressing E-selectin (p<0.05). Moreover, we found that blockade of P-selectin on endothelial cells reduced their interaction with MM cells (p<0.01), while blockade of E and L-selectin did not show any effect. Treating endothelial cells with GMI-1070 mimicked the effect of blocking P-selectin. Moreover, we found that treating endothelial cells with the chemokine stroma cell-derived factor-1-alpha (SDF1) increased their expression of P but not E or L-selectin detected by flow cytometry. Neither the blockade of each of the selectins and their ligands nor the GMI-1070 inhibited the trans-well chemotaxis of MM cells towards SDF1-alpha. However, blockade of P-selectin (p<0.001) on endothelial cells by GMI-1070 inhibited the trans-endothelial chemotaxis of MM cells towards SDF1-alpha. Both adhesion to endothelial cells and activation with recombinant P-selectin induced phosphorylation of cell adhesion related molecules including FAK, SRC, Cadherins, Cofilin, AKT and GSK3. GMI-1070 decreased the activation of cell adhesion molecules induced by both recombinant P-selectin and endothelial cells. Using in vivo flow cytometry we found that both anti P-selectin antibody and GMI-1070 prevented the extravasation of MM cells out of blood vessels into the bone marrow in mice. Moreover, we found that, in a co-culture system, endothelial cells protected MM cells from bortezomib induced apoptosis, an effect which was reversed by using GMI-1070, showing synergistic effect with bortezomib. CONCLUSION: In summary, we showed that P-selectin ligand is highly expressed in MM cells compared to normal plasma cells, and that it plays a major role in homing of MM cells to the BM, an effect which was inhibited by the pan-selectin inhibitor GMI-1070. This provides a basis for testing the effect of selectin inhibition on tumor initiation and tumor response to therapeutic agents such as bortezomib. Moreover, it provides a basis for future clinical trials for prevention of MM metastasis and increasing efficacy of existing therapies by using selectin inhibitors for the treatment of myeloma. Disclosures: Patton: GlycoMimetics, Inc: Employment. Smith:GlycoMimetics, Inc: Employment. Sarkar:GlycoMimetics, Inc: Employment. Anderson:Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Consultancy, Honoraria, Research Funding; Millennium: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Magnani:GlycoMimetics, Inc.: Employment. Ghobrial:Millennium: Honoraria, Research Funding, Speakers Bureau; Celgene: Consultancy, Honoraria, Speakers Bureau; Novartis: Honoraria, Speakers Bureau.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1194-1194
Author(s):  
Toshi Ghosh ◽  
Wilson I Gonsalves ◽  
Dragan Jevremovic ◽  
S. Vincent Rajkumar ◽  
Michael M. Timm ◽  
...  

Abstract Background: Prior studies suggest that the presence of >5% polyclonal plasma cells (pPCs) among total plasma cells (PCs) within the bone marrow (BM) is associated with a longer progression-free survival, higher response rates, and lower frequency of high-risk cytogenetic abnormalities in patients with newly diagnosed multiple myeloma (MM). However, the incidence and prognostic utility of this factor in patients with relapsed and/or refractory MM has not been previously evaluated. Thus, we evaluated the prognostic value of quantifying the percentage of pPCs among the total PCs in the BM of patients with actively relapsing MM. Methods: We evaluated all MM patients with actively relapsing disease (biochemical and/or symptomatic) seen at the Mayo Clinic, Rochester, from 2012 to 2013, who had BM samples evaluated by seven-color multiparametric flow cytometry. All patients had at least 24 months of follow-up from the date of flow evaluation. Cell surface antigens were assessed by direct immunofluorescence antibodies for CD45, CD19, CD38, CD138, cytoplasmic Kappa and Lambda Ig light chains, and DAPI nuclear stain. The flow cytometry data was collected using the Becton Dickinson FACSCanto II instruments that analyzed 150,000 events (cells); this data was then analyzed by multi-parameter analysis using the BD FACS DIVA Software. PCs were selectively analyzed through combinatorial gating using light scatter properties and CD38, CD138, CD19, and CD45. Clonal PCs were separated from pPCs based on the differential expression of CD45, CD19, DAPI (in non-diploid cases), and immunoglobulin light chains. The percentage of pPCs was calculated in total PCs detected. Survival analysis was performed by the Kaplan-Meier method and differences were assessed using the log rank test. Results: There were 180 consecutive patients with actively relapsing MM who had BM biopsies analyzed via flow cytometry as part of their routine clinical evaluation. The median age of this group was 65 years (range: 40 - 87); 52% were male. At the time of this analysis, 104 patients had died, and the 2-year overall survival (OS) rate for the cohort was 58%. The median number of therapies received was 4 (range: 1 - 15). Of these patients, 61% received a prior ASCT, and almost all (99%) received prior regimens containing either immunomodulators or proteasome inhibitors. There were 55 (30%) patients with >5% pPCs among the total PCs in their BM. The median percentage of pPCs among total PCs in these 55 patients was 33% (range: 5 - 99). The median OS for those with >5% pPCs was not reached compared with 22 months for those with <5% pPCs (P = 0.028; Figure 1). Patients with <5% pPCs PCs had a higher likelihood of high-risk FISH cytogenetics compared with the rest of the patients. In a univariate analysis, increasing number of pPCs was associated with an improved OS, while higher labeling index, number of prior therapies, and the presence of high-risk FISH cytogenetics were associated with a worse OS. In a multivariate analysis, only the increasing number of pPCs (P = 0.006), higher labeling index (P = 0.0002) and number of prior therapies (P = 0.003) retained statistical significance. Conclusion: Quantitative estimation of the percentage of pPCs among the total PCs in the BM of patients with actively relapsing MM was determined to be a predictor of worse OS. As such, this parameter is able to identify a group of patients with MM with actively relapsing disease who have a particularly poor outcome. Further studies evaluating its biological significance are warranted. Figure 1 Kaplan-Meier curve comparing OS between patients with ≥5% pPCs and <5% pPCs among the total PCs in their BM. Figure 1. Kaplan-Meier curve comparing OS between patients with ≥5% pPCs and <5% pPCs among the total PCs in their BM. Disclosures Kapoor: Celgene: Research Funding; Amgen: Research Funding; Takeda: Research Funding. Gertz:Prothena Therapeutics: Research Funding; Novartis: Research Funding; Alnylam Pharmaceuticals: Research Funding; Research to Practice: Honoraria, Speakers Bureau; Med Learning Group: Honoraria, Speakers Bureau; Celgene: Honoraria; NCI Frederick: Honoraria; Sandoz Inc: Honoraria; GSK: Honoraria; Ionis: Research Funding; Annexon Biosciences: Research Funding. Kumar:AbbVie: Research Funding; Noxxon Pharma: Consultancy, Research Funding; Celgene: Consultancy, Research Funding; Janssen: Consultancy, Research Funding; Array BioPharma: Consultancy, Research Funding; Sanofi: Consultancy, Research Funding; Onyx: Consultancy, Research Funding; Skyline: Honoraria, Membership on an entity's Board of Directors or advisory committees; Millennium: Consultancy, Research Funding; Kesios: Consultancy; Glycomimetics: Consultancy; BMS: Consultancy.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2102-2102 ◽  
Author(s):  
Mahesh Yadav ◽  
Cherie Green ◽  
Connie Ma ◽  
Alberto Robert ◽  
Andrew Glibicky ◽  
...  

Abstract Introduction:TIGIT (T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif [ITIM] domain) is an inhibitory immunoreceptor expressed by T and natural killer (NK) cells that is an important regulator of anti-tumor and anti-viral immunity. TIGIT shares its high-affinity ligand PVR (CD155) with the activating receptor CD226 (DNAM-1). We have recently shown that TIGIT blockade, together with PD-L1/PD-1 blockade, provides robust efficacy in syngeneic tumor and chronic viral infection models. Importantly, CD226 blockade abrogates the benefit of TIGIT blockade, suggesting additional benefit of TIGIT blockade through elaboration of CD226-mediated anti-tumor immunity, analogous to CTLA-4/CD28 regulation of T-cell immunity. Whether TIGIT and CD226 are expressed in patients with multiple myeloma (MM) and how TIGIT expression relates to PD-L1/PD-1 expression is unknown. Here we evaluate expression of TIGIT, CD226, PD-1 and PD-L1 in patients with MM to inform novel immunotherapy combinations. Methods:We performed multi-color flow cytometry (n = 25 patients), and multiplex qRT-PCR (n = 7) on bone marrow specimens from patients with MM to assess expression of TIGIT, CD226, PD-1, and PD-L1 on tumor and immune cells. Cells were stained with fluorescently conjugated monoclonal antibodies to label T cells (CD3, CD4, CD8), NK cells (CD56, CD3), plasma cells (CD38, CD45, CD319, CD56), inhibitory/activating receptors (PD-1, TIGIT, PD-L1, CD226), and an amine-reactive viability dye (7-AAD). Stained and fixed cells were analyzed by flow cytometry using BD FACSCanto™ and BD LSRFortessa™. Results:TIGIT, CD226 and PD-L1/PD-1 were detectable by flow cytometry in all patients with MM who were tested, with some overlapping and distinct expression patterns. TIGIT was commonly expressed by marrow-infiltrating CD8+ T cells (median, 65% of cells), CD4+ T cells (median, 12%) and NK cells. In contrast, CD226 was more commonly expressed by marrow-infiltrating CD4+ T cells (median, 74%) compared with CD8+ T cells (median, 38%). PD-1 was expressed by marrow-infiltrating CD8+ T cells (median 38%) and CD4+ T cells (median, 16%). TIGIT was co-expressed with PD-1 on CD8+ T cells (67%-97% TIGIT+ among PD-1+), although many PD-1-negative CD8+ T cells also expressed TIGIT (39%-78% of PD-1-negative). PD-L1 was also expressed by CD8+ (median, 23%) and CD4+ (median, 8%) T cells in addition to MM plasma cells (median, 95%), albeit with significantly lower intensity on T cells compared with plasma cells. The expression of TIGIT and PD-L1 mRNA was highly correlated (R2 = 0.80). Analysis of PVR expression will also be presented. Conclusions: TIGIT, CD226, PD-1, and PD-L1 were commonly expressed in MM bone marrow, but with different patterns. Among CD8+ T cells, the frequency of TIGIT+ T cells was almost twice that of PD-1+ T cells, whereas the majority of CD4+ T cells expressed CD226. TIGIT blockade may complement anti-PD-L1/PD-1 immunotherapy by activating distinct T-cell/NK-cell subsets with synergistic clinical benefit. These results provide new insight into the immune microenvironment of MM and rationale for targeting both the PD-L1/PD-1 interaction and TIGIT in MM. Disclosures Yadav: Genentech, Inc.: Employment. Green:Genentech, Inc.: Employment. Ma:Genentech, Inc.: Employment. Robert:Genentech, Inc.: Employment. Glibicky:Makro Technologies Inc.: Employment; Genentech, Inc.: Consultancy. Nakamura:Genentech, Inc.: Employment. Sumiyoshi:Genentech, Inc.: Employment. Meng:Genentech, Inc.: Employment, Equity Ownership. Chu:Genentech Inc.: Employment. Wu:Genentech: Employment. Byon:Genentech, Inc.: Employment. Woodard:Genentech, Inc.: Employment. Adamkewicz:Genentech, Inc.: Employment. Grogan:Genentech, Inc.: Employment. Venstrom:Roche-Genentech: Employment.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5630-5630 ◽  
Author(s):  
Sudhir Perincheri ◽  
Richard Torres ◽  
Christopher A Tormey ◽  
Brian R Smith ◽  
Henry M Rinder ◽  
...  

Abstract The diagnosis of multiple myeloma (MM) requires the demonstration of clonal plasma cells at ≥10% marrow cellularity or a biopsy-proven bony or extra-medullary plasmacytoma, plus one or more myeloma-defining events. Clinical laboratories use multi-parameter flow cytometry (MFC) evaluation of cytoplasmic light chain expression in CD38-bright, CD45-dim or CD138-positive, CD45dim cells to establish plasma cell clonality with a high-degree of sensitivity and specificity. Daratumumab, a humanized IgG1 kappa monoclonal antibody targeting CD38, has been shown to significantly improve outcomes in refractory MM, and daratumumab was granted breakthrough status in 2013. Daratumumab is currently approved for treatment of MM patients who have failed first-line therapies. It has been noted that daratumumab can interfere in blood bank assays for antibody screening, as well as serum protein electrophoresis (SPEP). We describe for the first time daratumumab interference in the assessment of plasma cell neoplasms by MFC; daratumumab interfered with both CD38- and CD138-based gating strategies in three MM patients. Patient A is a 68 year old man with a 10 year history of MM who had failed multiple therapies. He had then been treated with daratumumab for two months, stopping therapy 25 days prior to bone marrow assessment. Patient B is a 53 year old man with a 3 year history MM who had failed numerous treatments. He had been receiving daratumumab monotherapy for two months at the time of his bone marrow studies. On multiple marrow aspirates at times of relapse prior to receiving daratumumab, both patients had demonstrated CD38-bright positive CD45dim/negative plasma cells expressing aberrant CD56, as well as kappa light chain restriction; mature B cells were polyclonal in both. Patient C is a 65 year old man with a four-year history of MM status post autologous stem cell transplantation, who had been receiving carfilzomib and pomalidomide following relapse and continues to have rising lambda light chains and rib pain. He now has abnormal plasma cells in blood worrisome for plasma cell leukemia. Bone marrow aspirates from patients A and B, and blood from patient C demonstrated near absence of CD38-bright events as detected by MFC (Figure 1). Hypothesizing that these results were due to blocking of the CD38 antigen by daratumumab, gating on CD138-positive events was assessed; surprisingly, virtually no CD138-positive events were detected by MFC. All 3 samples demonstrated a CD56-positive CD45dim population; when light chain studies were employed using specific gating on the CD56-positive population, light chain restriction was demonstrated in all patients (Figure 1). Aspirate morphology confirmed numerous abnormal, nucleolated plasma cells (Figure 2A), thus excluding a sampling error. CD138 and CD38 expression was also tested on the marrow biopsy cores from both patients. In contrast to MFC, immunohistochemistry (IHC) showed positive labeling of plasma cells with both CD138 (Figure 2B) and CD38 (Figure 2C). The reason for the labeling discrepancy between MFC and IHC is unknown. The different antibodies in the assays may target different epitopes; alternatively, tissue fixation/decalcification may dissociate the anti-CD38 therapeutic monoclonal from its target. Detection of clonal plasma cell populations is important for assessing response to therapy. Laboratories relying primarily on MFC to assess marrow aspirates without a concomitant biopsy may falsely diagnose remission or significant disease amelioration in daratumumab-treated patients. MFC is generally highly sensitive for monitoring minimal residual disease (MRD) in MM, but daratumumab-treated patients should have their biopsy evaluated to confirm the MRD assessment by MFC. We were able to detect large numbers of plasma cells and also demonstrate clonality in our patients based on an alternative MFC marker, aberrant CD56 expression, an approach that may not be possible in all cases. Figure 1 Flow cytometry showing near-absence of CD38-bright elements in the marrow of patient A (top panels). Gating on CD56-positive cells in the same sample reveals a kappa light chain-restricted plasma cell population (bottom panels). Figure 1. Flow cytometry showing near-absence of CD38-bright elements in the marrow of patient A (top panels). Gating on CD56-positive cells in the same sample reveals a kappa light chain-restricted plasma cell population (bottom panels). Figure 1 The marrow aspirate from Fig. 1 shows abnormal plasma cells (A). Immunohistochemistry on the concomitant biopsy shows the presence of numerous CD138-positive (B) and CD38-positive (C) plasma cells. Figure 1. The marrow aspirate from Fig. 1 shows abnormal plasma cells (A). Immunohistochemistry on the concomitant biopsy shows the presence of numerous CD138-positive (B) and CD38-positive (C) plasma cells. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5538-5538
Author(s):  
Can Li ◽  
Yogesh Jethava ◽  
Ivana Frech ◽  
Fenghuang Zhan

Preclinical mouse models are important tools to recapitulate human multiple myeloma (MM) disease. Different preclinical models allow for specific hypothesis-driven research and enables researchers to address multiple questions. Though the SCID-Hu and SCID-synth-hu mice, and a recently established humanized mouse model containing the knock-in of human cytokine genes permit the growth of primary pre-neoplastic and malignant plasma cells, the high-cost, long-term workflow, lack of access to genetically engineered mice are overwhelming disadvantages of these current humanized MM mouse models. Our objective is to establish a unique patient-derived-xenograft (PDX) MM mouse model as an easily accessible approach for prevention and therapy of human MM disease. Bone marrow aspirates from MM patients upon diagnosis were obtained from the Multiple Myeloma Molecular Epidemiology Resource (University of Iowa) and mononuclear cells were isolated. Groups of 7-8 weeks old NOD/SCID/IL2RΥgnull (NSG) mice were administrated with sub-lethal irradiation. 3-5×106 unsorted MM patient-derived bone marrow mononuclear cells were intravenously injected into each recipient NSG mouse after irradiation. In order to monitor engraftment, recipient mice were bled weekly from week 2 after inoculation and serial Serum Protein Electrophoresis (SPEP) tests of recipient mice were performed. Detection of distinct M-protein band by the SPEP test with weight loss and/or limited mobility of injected recipient mice were indicative of successful MM engraftment and the endpoint of this study. M protein was found in all 30 mice after 3 ~ 5 weeks of injection human MM mononuclear cells. To further confirm that the M protein was secreted from human MM cells, we performed flow cytometry to determine human MM cells using anti-human CD138 antibody from mouse tissues. About 10% human CD138+ MM cells were detected in spleen and bone marrow from these PDX-NSG mice by flow cytometry, whereas human CD138+ cells were absent in irradiated control mice without injection of human MM cells. We also performed immunohistochemistry on bone marrow sections of PDX-NSG mice. Human CD138 protein and human light chain protein were positively stained on these samples. We next examined MM related organ damage, which is part of the defining criteria of human MM disease. Elevated blood urea nitrogen (BUN) was detected in xenograft mouse serum compared to control mice, suggesting renal insufficiency rendered by MM engraftment. Meanwhile, xenograft mouse kidney sections were stained with PAS (Periodic acid-Schiff), which demonstrated protein and cellular cast nephropathy and inflammatory infiltration. We also performed TRAP staining on representative xenograft mouse bone sections. TRAP positive osteoclasts were increased in the distal portions of the femur bones derived from these PDX-NSG mice. We present robust data that a newly developed PDX-NSG model can grow primary human MM cells. Our hypothesis holds that cells from the same patient bone marrow microenvironment support tumor plasma cells survival and growth. These factors enables this new model to recapitulate more accurately the features of human MM. We will further investigate whether this new humanized PDX-NSG model provides a better tool for understanding MM development and for a personalized medicine. Disclosures Zhan: BIPHARM LLC: Consultancy, Other: % Allocation of Profit.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3059-3059
Author(s):  
Can Li ◽  
Xuelian Tan ◽  
Qierra Brockman ◽  
Yogesh Jethava ◽  
Marta Chesi ◽  
...  

Conventional therapies to multiple myeloma (MM) are not aimed at specific molecular targets leading ultimately to treatment resistance. Recent reports have shown that iron is instrumental in cancer development and progression and that high intracellular iron levels are associated with poor prognosis. We have demonstrated that MM cells exhibit dysregulated iron homeostasis and that limitation of cytosolic iron inhibits MM cell growth both in vitro and in vivo. The potential therapeutic role of iron should be further investigated to better understand how targeting high-iron MM cells could prevent or delay MM development and recurrence. Our study will provide crucial insights into the iron biology of MM pathogenesis and may lead to novel MM therapy. In this study, two mouse models, young Vk*MYC and old KaLwRij mice, were injected with iron dextran (1.25 mg/kg, IP, once a week). Tumor burden was monitored by serial Serum Protein Electrophoresis (SPEP) tests, flow cytometry, and immunohistochemistry. In vitro co-culturing of ARP1 MM cells with macrophages was employed to determine iron transfer. To determine iron's roles in MM evolution, we injected iron dextran into Vk*MYC mice at 8-week age. Vk*MYC mice develop MGUS around 40-50 weeks with plasma cell (PC) bone marrow infiltration and kidney damage etc. Iron-dextran was used because it is primarily taken up by macrophages. After 14-16 weeks of iron injection, M spike was detected in the injected Vk*MYC mice. The percentage of bone marrow plasma cells (CD138+) were significantly increased to 9% in the Vk*MYC mice injected with iron compared to control mice injected with vehicle by flow cytometry and immunohistochemistry. The acceleration of disease progression via iron injection was also tested in KaLwRij mice, which also spontaneously develops MGUS in old age. M protein was detected in 12 of 15 mice (80%) injected with iron dextran for 10 weeks and 1 of 5 KaLwRij (20%) control mice at 18-months of age. CD138+ B220- plasma cells were determined by flow cytometry. A significant increase of CD138+B220- plasma cells in iron treated mice (4% versus 2%) was observed compared to vehicle control mice. Deparaffined sections of bone marrow from the above mice were stained with Prussian blue and confirmed positive staining of macrophages from iron administrated mice. These results indicate that iron accelerates MGUS development in vivo. We next evaluated whether MM cells accumulate iron from the microenvironment. ARP1 MM cells were co-cultured with primary macrophages derived from mouse bone marrow to mimic disease environment in vitro. Under these conditions, MM cells induced macrophage polarization from M0 to M1 and M2. Furthermore, increased macrophage polarization was confirmed in vivo from the KaLwRij mice injected with 5TGM1 MM cells. To confirm that MM cells uptake iron from macrophages, increased intracellular ferritin levels were observed by western blot in ARP1 MM cells following co-culture with iron-loaded macrophages. We observed that this increase in intracellular ferritin was mediated via the transferrin receptor. This iron mobilization was prevented by iron chelation. Additionally, we confirmed that ferritin levels were higher in CD138+ primary human MM cells compared to CD138- non-MM cells by western blot. Our data indicate that MM cells promote macrophage polarization resulting in the transferring of iron into MM cells. The blockade of iron trafficking between MM cells and macrophages might hold a promise for the prevention and therapy in MM. Disclosures Bergsagel: Celgene: Consultancy; Ionis Pharmaceuticals: Consultancy; Janssen Pharmaceuticals: Consultancy. Zhan:BIPHARM LLC: Consultancy, Other: % Allocation of Profit.


2021 ◽  
Vol 8 (4) ◽  
pp. 219-224
Author(s):  
Ali Eser

Objective: Flow cytometry (FC) is a diagnostic method supporting traditional morphological examination in disease follow-up and the diagnosis of Multiple myeloma (MM). Normal and atypical plasma cells (PCs) can be told apart from each other by means of FC method. The plasma cell rate is the highest in the blood obtained in the first aspirate during bone marrow aspiration in MM. Material and methods: A total of 60 patients that have been diagnosed with MM between 2018 and 2020, including 30 patients whom flow cytometry was studied with the first aspirate during bone marrow aspiration, and 30 patients whom FC was studied with the second aspirate were included in our study. The characteristics of the patients were analyzed retrospectively from their files. Results: The median ratio of plasma cells (PCs) detected by FC and bone marrow biopsy  was 17,5% and 44%, respectively. While this rate was median 37,5% in patients that flow cytometric study was performed with the first aspirate, the rate was found to be median 7% in patients that FC was performed with the second sample. The PCs rates were statistically significantly higher with the flow cytometric study with the first aspirate than the second one (p=0.000). Conclusion: Flow cytometric study with the first aspirate during bone marrow aspiration in patients with MM is diagnostically important.  


Sign in / Sign up

Export Citation Format

Share Document